A229089 Numbers n such that sigma(n) mod n < antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
3, 5, 6, 7, 9, 11, 13, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93
Offset: 1
Keywords
Examples
Number 11 is in sequence because sigma(11) mod 11 = 12 mod 11 = 1 < antisigma(11) mod 11 = 54 mod 11 = 10.
Links
- Jaroslav Krizek, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[100],Mod[Total[Complement[Range[#],Divisors[#]]],#]> Mod[ DivisorSigma[ 1,#],#]&] (* Harvey P. Dale, Jan 24 2022 *)
Comments