cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229098 Smallest area A of Heron triangles with sides (a, b, c) in arithmetic progression of the form b - d(n), b, b + d(n), where d(n) = A091998(n) = 12*n +- 1.

Original entry on oeis.org

6, 156, 126, 546, 3750, 7350, 570, 1176, 14406, 2046, 3216, 4740, 1554, 3354, 43350, 54150, 6180, 3924, 17556, 84966, 3294, 24174, 106134, 7446, 126150, 144150, 28236, 33174, 21294, 10374, 6006, 9264, 16716, 247254, 252150, 277350, 282534, 55944, 75894, 26676
Offset: 1

Views

Author

Michel Lagneau, Sep 13 2013

Keywords

Comments

a(1) = A011945(1).
According to the reference, d(n) is congruent (mod 12) to 1 or -1.
Let the sides be b - d, b, b + d where 1 <= d <= b. Then the semiperimeter s = 3b/2 and by Heron's formula, the area is A = b*sqrt(3*(b^2 - 4*d^2))/4.
The following table gives the first values (d(n), a, b, c, A):
+------+-----+-----+-----+-------+
| d(n) | a | b | c | A |
+------+-----+-----+-----+-------+
| 1 | 3 | 4 | 5 | 6 |
| 11 | 15 | 26 | 37 | 156 |
| 13 | 15 | 28 | 41 | 126 |
| 23 | 29 | 52 | 75 | 546 |
| 25 | 75 | 100 | 125 | 3750 |
| 35 | 105 | 140 | 175 | 7350 |
| 37 | 39 | 76 | 113 | 570 |
| 47 | 51 | 98 | 145 | 1176 |
| 49 | 147 | 196 | 245 | 14406 |

Examples

			a(2) = 156 is in the sequence because d(2) = A091998(2) = 11 and (a, b, c) = (15, 26, 37) => the semiperimeter is (15 + 26 + 37)/2 = 39, and A = sqrt(39*(39-15)*(39-26)*(39-37)) = 156.
		

Crossrefs

Programs

  • Maple
    with(numtheory):u:=0:nn:=1000:lst:={1}:for k from 1 to 10 do:x:=12*k-1:y:=12*k+1:lst:=lst union {x} union {y}:od:for n from 1 to 20 do:ii:=0:d:=lst[n]:for b from 1 to nn while(ii=0)do:s:= b*sqrt(3*(b^2-4*d^2))/4:if s>0 and s=floor(s) then ii:=1:u:=u+1:printf ( "%d %d %d %d \n",u,d,b,s):else fi:od:od: