cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229117 Numbers k where d/k reaches a new record, with d the distance from the k-th triangular number to the nearest square.

Original entry on oeis.org

2, 3, 13, 20, 37, 78, 119, 218, 457, 696, 1273, 2666, 4059, 7422, 15541, 23660, 43261, 90582, 137903, 252146, 527953, 803760, 1469617, 3077138, 4684659, 8565558, 17934877, 27304196, 49923733, 104532126, 159140519, 290976842
Offset: 1

Views

Author

Ralf Stephan, Sep 14 2013

Keywords

Comments

Positions of records of A229118(n)/n.
The maximum of d/k appears to converge to sqrt(2)/2 (A010503), i.e., k*(k+1)/2 is not more than k*sqrt(2)/2 distant from a square.

Examples

			G.f. = 2*x + 3*x^2 + 13*x^3 + 20*x^4 + 37*x^5 + 78*x^6 + 119*x^7 + 218*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(2 +x+10*x^2-5*x^3+11*x^4-19*x^5+x^6-2*x^7+3*x^8)/(1-x-6*x^3+6*x^4+x^6- x^7))); // G. C. Greubel, Aug 09 2018
  • Mathematica
    Drop[CoefficientList[Series[x*(2 + x + 10*x^2 - 5*x^3 + 11*x^4 - 19*x^5 + x^6 - 2*x^7 + 3*x^8)/(1 - x - 6*x^3 + 6*x^4 + x^6 - x^7), {x, 0, 50}], x], 1] (* G. C. Greubel, Aug 09 2018 *)
  • PARI
    m=0;for(n=1, 10^9, t=n*(n+1)/2;s=sqrtint(t);d=min(t-s^2,(s+1)^2-t);r=d/n;if(r>m,m=r;print1(n, ",")))
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( (1 + x + x^2 + 4*x^3 + x^4 + 11*x^5 - 18*x^6 - 2*x^8 + 3*x^9) / (1 - x - 6*x^3 + 6*x^4 + x^6 - x^7) + x * O(x^n), n))}; /* Michael Somos, Dec 25 2016 */
    

Formula

G.f.: x * (2 + x + 10*x^2 - 5*x^3 + 11*x^4 - 19*x^5 + x^6 - 2*x^7 + 3*x^8) / (1 - x - 6*x^3 + 6*x^4 + x^6 - x^7). - Michael Somos, Dec 25 2016
a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - a(n-6) + a(n-7) if n>9. - Michael Somos, Dec 25 2016