cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229127 Number of n-digit numbers containing the digit '0'.

Original entry on oeis.org

1, 9, 171, 2439, 30951, 368559, 4217031, 46953279, 512579511, 5513215599, 58618940391, 617570463519, 6458134171671, 67123207545039, 694108867905351, 7146979811148159, 73322818300333431, 749905364703000879, 7649148282327007911, 77842334540943071199
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 14 2013

Keywords

Comments

Other than the number 0 itself, numbers with leading zeros are not allowed, so the general formula is a(n)=9*10^(n-1)-9^n, which is simply the number of n-digit numbers that begin with a nonzero digit (9*10^(n-1)) minus the number of n-digit numbers consisting only of nonzero digits (9^n). (Because of the 1-digit number 0 itself, the general formula does not apply at n=1.)
Other than the number 1, and 9 which is a semiprime, the minimum number of possible prime factors with multiplicity of a(n) = 3, which holds for 171 = 3^2 * 19; 2439 = 3^2 * 271; 46953279 = 3^2 * 5217031; 617570463519 = 3^2 * 68618940391; 77842334540943071199 = 3^2 * 8649148282327007911. - Jonathan Vos Post, Sep 16 2013

Examples

			a(2) = 9, since there are 9 2-digit numbers that contain a '0'.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{19,-90},{1,9,171},20] (* Stefano Spezia, Nov 15 2023 *)

Formula

For n > 1, a(n) = 9*10^(n-1) - 9^n.
For n > 2, a(n) = 9*(a(n-1) + 10^(n-2)).
G.f.: x*(1-10*x+90*x^2)/((1-9*x)*(1-10*x)). - R. J. Mathar, Sep 14 2013
a(n) = A217094(n) - A217094(n-1), for n > 1. - Hieronymus Fischer, Dec 27 2013
E.g.f.: (9*exp(10*x) - 10*exp(9*x) + 10*x + 1)/10. - Stefano Spezia, Nov 15 2023

Extensions

Example added and g.f. corrected by Hieronymus Fischer, Dec 27 2013