cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229139 Smallest m such that Fibonacci(2n-1) = m^2 + k^2.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 9, 21, 34, 55, 89, 73, 13, 377, 610, 987, 64, 244, 4155, 4554, 10946, 2191, 28657, 15857, 74957, 34022, 29811, 50481, 134104, 832040, 162589, 387938, 711703, 1556305, 6229800, 4173137, 4059539, 1972951, 51797450, 4866315, 165580141, 46049477, 202620393, 348451533, 181781990
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2013

Keywords

Comments

Every odd-indexed Fibonacci number (A000045) is a sum of two squares (see A124134).
Which of the a(n) are not Fibonacci numbers?

Examples

			A000045(2*6-1) = 89 = 5^2 + 8^2 so a(6)=5.
A000045(2*8-1) = 610 = 9^2 + 23^2 = 13^2 + 21^2, so a(8)=9.
		

Crossrefs

Programs

  • Haskell
    a229139 1 = 0
    a229139 n = head $
       dropWhile (== 0) $ map (a037213 . (t -) . (^ 2)) [s, s - 1 ..]
       where t = a000045 (2 * n - 1); s = a000196 t
    -- Reinhard Zumkeller, Oct 11 2013
  • PARI
    for(n=1, 10^6, t=fibonacci(2*n-1);s=sqrtint(t);forstep(i=s,1,-1,if(issquare(t-i*i),print1(sqrtint(t-i*i), ",");break)))