cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229142 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 13, 1, 1, 1, 25, 115, 63, 1, 1, 1, 121, 2641, 2371, 321, 1, 1, 1, 721, 114121, 392641, 54091, 1683, 1, 1, 1, 5041, 7489441, 169417921, 67982041, 1307377, 8989, 1, 1, 1, 40321, 681120721, 137322405361, 308238414121, 12838867105, 32803219, 48639, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 23 2013

Keywords

Comments

Column k is the diagonal of the rational function 1 / (1 - Sum_{j=1..k} x_j - Product_{j=1..k} x_j) for k>1. - Seiichi Manyama, Jul 10 2020

Examples

			A(1,3) = 3*2+1 = 7:
          (0,1,1)-(0,0,1)
         /       X       \
  (1,1,1)-(1,0,1) (0,1,0)-(0,0,0)
       \ \       X       / /
        \ (1,1,0)-(1,0,0) /
         `---------------´
Square array A(n,k) begins:
  1, 1,    1,       1,           1,               1, ...
  1, 1,    3,       7,          25,             121, ...
  1, 1,   13,     115,        2641,          114121, ...
  1, 1,   63,    2371,      392641,       169417921, ...
  1, 1,  321,   54091,    67982041,    308238414121, ...
  1, 1, 1683, 1307377, 12838867105, 629799991355641, ...
		

Crossrefs

Rows n=0-1 give: A000012, A038507 (for k>1).
Main diagonal gives: A229267.

Programs

  • Maple
    with(combinat):
    A:= (n,k)-> `if`(k<2, 1, add(multinomial(n+(k-1)*j, n-j, j$k), j=0..n)):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    a[, 0] = a[, 1] = 1; a[n_, k_] := Sum[Product[Binomial[n+j*m, m], {j, 0, k-1}], {m, 0, n}]; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 11 2013 *)

Formula

A(n,k) = Sum_{j=0..n} multinomial(n+(k-1)*j; n-j, {j}^k) for k>1, A(n,0) = A(n,1) = 1.
G.f. of column k: Sum_{j>=0} (k*j)!/j!^k * x^j / (1-x)^(k*j+1). for k>1. - Seiichi Manyama, Jul 10 2020