cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229159 Smallest integer areas of integer-sided triangles where at least one side is of length prime(n).

Original entry on oeis.org

0, 6, 6, 42, 66, 24, 36, 114, 966, 60, 930, 114, 126, 1290, 4230, 90, 1770, 330, 2814, 14910, 216, 4740, 1494, 420, 420, 510, 6180, 4494, 840, 570, 8382, 11790, 630, 9174, 210, 4530, 840, 2934, 45090, 3276, 22554, 1260, 24066, 336, 1386, 16716, 26586, 52182
Offset: 1

Views

Author

Michel Lagneau, Sep 17 2013

Keywords

Comments

Conjecture: for all prime p > 2 there exists an integer-sided triangle with integer area where at least one side is of length p.
There exist triangles of integer area and integer side lengths having two sides whose lengths are distinct prime numbers; for example, (3,4,5), (11,13,20), (19, 20,37), (43,61,68), (59,68,109), (11,60,61), (79,241, 312), (41,50,89), (26,73,97), ... corresponding to the areas 6, 66, 114, 1290, 1770, 330, 4740, 420, 420, ...
Observation: there exist some integer-area, integer-sided triangles with two prime sides such that the perimeter equals 4 times the smaller prime. For example:
(3, 4, 5) => 12 = 4*3;
(11, 13, 20) => 44 = 4*11;
(19, 20, 37) => 76 = 4*19;
(43, 61, 68) => 172 = 4*43;
(59, 68, 109) => 236 = 4*59;
(131, 181, 212) => 524 = 4*131;
(139, 157, 260) => 556 = 4*139;
(179, 260, 277) => 716 = 4*179.
The first 25 values (prime(n), smallest area, a, b, c) are:
+---------+-------+-----+-----+-----+
| prime(n)| Area | a | b | c |
+---------+-------+-----+-----+-----+
| 2 | 0 | 0 | 0 | 0 |
| 3 | 6 | 3 | 4 | 5 |
| 5 | 6 | 3 | 4 | 5 |
| 7 | 42 | 7 | 15 | 20 |
| 11 | 66 | 11 | 13 | 20 |
| 13 | 24 | 4 | 13 | 15 |
| 17 | 36 | 9 | 10 | 17 |
| 19 | 114 | 19 | 20 | 37 |
| 23 | 966 | 23 | 140 | 159 |
| 29 | 60 | 6 | 25 | 29 |
| 31 | 930 | 31 | 68 | 87 |
| 37 | 114 | 19 | 20 | 37 |
| 41 | 126 | 15 | 28 | 41 |
| 43 | 1290 | 43 | 61 | 68 |
| 47 | 4230 | 47 | 425 | 468 |
| 53 | 90 | 4 | 51 | 53 |
| 59 | 1770 | 59 | 68 | 109 |
| 61 | 330 | 11 | 60 | 61 |
| 67 | 2814 | 67 | 85 | 116 |
| 71 | 14910 | 71 | 447 | 476 |
| 73 | 216 | 9 | 73 | 80 |
| 79 | 4740 | 79 | 241 | 312 |
| 83 | 1494 | 83 | 85 | 164 |
| 89 | 420 | 41 | 50 | 89 |
| 97 | 420 | 26 | 73 | 97 |

Crossrefs

Cf. A226453.

Programs

  • Maple
    with(numtheory):nn:=500: for m from 2 to 40 do: q:=ithprime(m):ii:=0:for a from 1
      to nn while(ii=0) do: for b from a to nn while(ii=0) do: for c from b to nn while(ii=0) do: p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): if x>0 then x0:= sqrt(x):else fi:if (x0=floor(x0) and a=q) or (x0=floor(x0) and b=q) or (x0=floor(x0) and c=q)then ii:=1: printf ( "%d %d %d %d %d \n",q,x0,a,b,c):
    :else fi:od:od:od:od: