A229746 Integer areas of integer-sided triangles where two sides are of prime length.
6, 12, 30, 60, 66, 72, 114, 120, 180, 210, 240, 330, 336, 360, 396, 420, 456, 660, 756, 780, 840, 900, 984, 1116, 1200, 1248, 1260, 1290, 1320, 1584, 1590, 1680, 1710, 1716, 1770, 1800, 1980, 2100, 2310, 2400, 2460, 2496, 2520, 2604, 2640, 2940, 2970, 3060, 3120
Offset: 1
Keywords
Examples
114 is in the sequence because the triangle (19, 20, 37) => semiperimeter s = (19+20+37)/2 = 38, and A = sqrt(38*(38-19)*(38-20)*(38-37)) = 114, with 19 and 37 prime numbers.
Links
- Eric W. Weisstein, Heron's Formula
Programs
-
Mathematica
area[a_, b_, c_] := Module[{s = (a + b + c)/2, a2}, a2 = s (s - a) (s - b) (s - c); If[a2 < 0, 0, Sqrt[a2]]]; goodQ[a_, b_, c_] := Module[{ar = area[a, b, c]}, ar > 0 && IntegerQ[ar]]; nn = 80; t = {}; ps = Prime[Range[2, nn]]; mx = 3*ps[[-1]]; Do[If[p <= q && goodQ[p, q, e], aa = area[p, q, e]; If[aa <= mx, AppendTo[t, aa]]], {p, ps}, {q, ps}, {e, q - p + 2, p + q - 2, 2}]; t = Union[t] (* T. D. Noe, Oct 01 2013 *)
Extensions
Extended by T. D. Noe, Sep 30 2013
Missing term 2970 from Giovanni Resta, Mar 08 2017
Comments