cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229179 Number of solutions of x^2 + y^2 + z^2 == -1 (mod n) with x, y, and z in 0..n-1.

Original entry on oeis.org

1, 4, 12, 8, 30, 48, 56, 0, 108, 120, 132, 96, 182, 224, 360, 0, 306, 432, 380, 240, 672, 528, 552, 0, 750, 728, 972, 448, 870, 1440, 992, 0, 1584, 1224, 1680, 864, 1406, 1520, 2184, 0, 1722, 2688, 1892, 1056, 3240, 2208, 2256, 0, 2744, 3000, 3672, 1456
Offset: 1

Views

Author

Keywords

Examples

			As 60 = 4 * 3 * 5, a(60) = a(4) * a(3) * a(5) = 8 * (3 * (3 + 1)) * (5 * (5 + 1)) = 8 * 12 * 30 = 2880. - _David A. Corneth_, Jun 24 2018
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[ If[Mod[a^2 + b^2 + c^2 + 1, n] == 0, 1, 0], {c, 0, n - 1}, {b, 0,  n - 1}, {a, 0, n - 1}], {n, 14}]
    f[p_, e_] := If[p == 2, Which[e == 1, 4, e == 2, 8, e > 2, 0], (p + 1)*p^(2*e - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Oct 18 2022 *)
  • PARI
    a(n)={my(p=Mod(sum(i=0, n-1, x^(i^2 % n)), x^n-1)); polcoeff(lift(p^3), n-1)} \\ Andrew Howroyd, Jun 24 2018
    
  • PARI
    first(n) = {my(res = vector(n)); forstep(i = 1, n, 2, f = factor(i); res[i] = 1; for(j = 1, #f~, res[i] *= f[j, 1] * (f[j, 1] + 1) * f[j, 1] ^ ((f[j, 2] - 1) << 1)); res); for(k = 1, 2, forstep(i = 1, n >> k, 2, res[i << k] = res[i] << (k+1))); res} \\ David A. Corneth, Jun 24 2018

Formula

a(8 * n) = 0; for odd prime p, a(p^k) = p^(2 * k - 1) * (p + 1); a(2) = 4, a(4) = 8. - David A. Corneth, Jun 24 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = 13/(4*Pi^2) = 0.329293... . - Amiram Eldar, Oct 18 2022