cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229180 Expansion of (chi(-x) * chi(-x^3))^-3 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 6, 16, 33, 60, 118, 210, 354, 612, 1008, 1608, 2583, 4035, 6174, 9448, 14196, 21024, 31054, 45282, 65322, 93884, 133638, 188640, 265225, 370086, 512934, 708136, 971628, 1325724, 1802134, 2437200, 3280452, 4400132, 5876184, 7815288, 10360890, 13683525
Offset: 0

Views

Author

Michael Somos, Sep 30 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In Verrill (1999) section 2.6, denoted by g as a function of q.

Examples

			G.f. = 1 + 3*x + 6*x^2 + 16*x^3 + 33*x^4 + 60*x^5 + 118*x^6 + 210*x^7 + ...
G.f. = q + 3*q^3 + 6*q^5 + 16*q^7 + 33*q^9 + 60*q^11 + 118*q^13 + 210*q^15 + ...
		

References

  • H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[x^3, x^6])^3, {x, 0, n}];
    nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^3, n))};

Formula

Expansion of q^(-1/2) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^3 in powers of q.
Euler transform of period 6 sequence [3, 0, 6, 0, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = (1/8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058492.
G.f.: t / (1 - 10*t^2 + 9*t^4)^(1/2) where t = the g.f. of A217786.
G.f.: 1 / (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3.
Convolution inverse of A058492.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015