A229180 Expansion of (chi(-x) * chi(-x^3))^-3 in powers of x where chi() is a Ramanujan theta function.
1, 3, 6, 16, 33, 60, 118, 210, 354, 612, 1008, 1608, 2583, 4035, 6174, 9448, 14196, 21024, 31054, 45282, 65322, 93884, 133638, 188640, 265225, 370086, 512934, 708136, 971628, 1325724, 1802134, 2437200, 3280452, 4400132, 5876184, 7815288, 10360890, 13683525
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 6*x^2 + 16*x^3 + 33*x^4 + 60*x^5 + 118*x^6 + 210*x^7 + ... G.f. = q + 3*q^3 + 6*q^5 + 16*q^7 + 33*q^9 + 60*q^11 + 118*q^13 + 210*q^15 + ...
References
- H. Verrill, Some Congruences related to modular forms, Max Planck Institute, 1999.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- H. Verrill, Some Congruences related to modular forms
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[x^3, x^6])^3, {x, 0, n}]; nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)))^3, n))};
Formula
Expansion of q^(-1/2) * (eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)))^3 in powers of q.
Euler transform of period 6 sequence [3, 0, 6, 0, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = (1/8) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A058492.
G.f.: t / (1 - 10*t^2 + 9*t^4)^(1/2) where t = the g.f. of A217786.
G.f.: 1 / (Product_{k>0} (1 - x^(2*k - 1)) * (1 - x^(6*k - 3)))^3.
Convolution inverse of A058492.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
Comments