cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229207 Numbers k such that Sum_{j=1..k} tau(j)^j == 0 (mod k), where tau(j) = A000005(j), the number of divisors of j.

Original entry on oeis.org

1, 46, 135, 600, 1165, 1649, 5733, 6788, 6828, 9734, 29686, 363141, 1542049
Offset: 1

Views

Author

Paolo P. Lava, Sep 16 2013

Keywords

Comments

a(12) > 200000. - Michel Marcus, Feb 25 2016
a(13) > 500000. - Harvey P. Dale, Dec 13 2018
a(14) > 3000000. - Jason Yuen, Feb 27 2024

Examples

			tau(1)^1 + tau(2)^2 + ... + tau(45)^45 + tau(46)^46 = 1^1 + 2^2 + ... + 6^45 + 4^46 = 86543618042218910328339719795268200166 and 86543618042218910328339719795268200166 / 46 = 1881383000917802398442167821636265221.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n, t; t:=0;
    for n from 1 to q do t:=t+tau(n)^n; if t mod n=0 then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    Module[{nn=30000,ac},ac=Accumulate[Table[DivisorSigma[0,i]^i,{i,nn}]];Select[ Thread[{ac,Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]](* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    isok(n) = sum(i=1, n, Mod(numdiv(i), n)^i) == 0; \\ Michel Marcus, Feb 25 2016

Extensions

a(12) added by Harvey P. Dale, Dec 13 2018
a(13) added by Jason Yuen, Feb 27 2024