A229207 Numbers k such that Sum_{j=1..k} tau(j)^j == 0 (mod k), where tau(j) = A000005(j), the number of divisors of j.
1, 46, 135, 600, 1165, 1649, 5733, 6788, 6828, 9734, 29686, 363141, 1542049
Offset: 1
Examples
tau(1)^1 + tau(2)^2 + ... + tau(45)^45 + tau(46)^46 = 1^1 + 2^2 + ... + 6^45 + 4^46 = 86543618042218910328339719795268200166 and 86543618042218910328339719795268200166 / 46 = 1881383000917802398442167821636265221.
Crossrefs
Programs
-
Maple
with(numtheory); P:=proc(q) local n, t; t:=0; for n from 1 to q do t:=t+tau(n)^n; if t mod n=0 then print(n); fi; od; end: P(10^6);
-
Mathematica
Module[{nn=30000,ac},ac=Accumulate[Table[DivisorSigma[0,i]^i,{i,nn}]];Select[ Thread[{ac,Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]](* Harvey P. Dale, Dec 13 2018 *)
-
PARI
isok(n) = sum(i=1, n, Mod(numdiv(i), n)^i) == 0; \\ Michel Marcus, Feb 25 2016
Extensions
a(12) added by Harvey P. Dale, Dec 13 2018
a(13) added by Jason Yuen, Feb 27 2024
Comments