cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229326 Total sum of 4th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 18, 101, 392, 1119, 2904, 6407, 13578, 26218, 49218, 86782, 150860, 249723, 408810, 647170, 1013278, 1545029, 2337738, 3460218, 5086658, 7350874, 10549872, 14929931, 21009874, 29205500, 40385036, 55289000, 75309056, 101692923, 136710130, 182377824
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 4th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^4}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
Convolution of A001159 and A000041. - Vaclav Kotesovec, May 28 2018

Crossrefs

Column k=4 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^4])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^4*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^4, {k, 1, n}]; Array[a, 32, 0] (* Jean-François Alcover, Dec 15 2016 *)
    Table[Sum[DivisorSigma[4, k]*PartitionsP[n-k], {k, 1, n}], {n, 0, 40}] (* Vaclav Kotesovec, May 27 2018 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^4.
G.f.: g(x) = (Sum_{k>=1} k^4*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 216*sqrt(2)*Zeta(5)/Pi^5 * exp(Pi*sqrt(2*n/3)) * n^(3/2). - Vaclav Kotesovec, May 28 2018