A229326 Total sum of 4th powers of parts in all partitions of n.
0, 1, 18, 101, 392, 1119, 2904, 6407, 13578, 26218, 49218, 86782, 150860, 249723, 408810, 647170, 1013278, 1545029, 2337738, 3460218, 5086658, 7350874, 10549872, 14929931, 21009874, 29205500, 40385036, 55289000, 75309056, 101692923, 136710130, 182377824
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008.
Crossrefs
Column k=4 of A213191.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], `if`(i>n, b(n, i-1), ((g, h)-> g+h+[0, h[1]*i^4])(b(n, i-1), b(n-i, i))))) end: a:= n-> b(n, n)[2]: seq(a(n), n=0..40); # second Maple program: g := (sum(k^4*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
-
Mathematica
(* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^4, {k, 1, n}]; Array[a, 32, 0] (* Jean-François Alcover, Dec 15 2016 *) Table[Sum[DivisorSigma[4, k]*PartitionsP[n-k], {k, 1, n}], {n, 0, 40}] (* Vaclav Kotesovec, May 27 2018 *)
Formula
a(n) = Sum_{k=1..n} A066633(n,k) * k^4.
G.f.: g(x) = (Sum_{k>=1} k^4*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 216*sqrt(2)*Zeta(5)/Pi^5 * exp(Pi*sqrt(2*n/3)) * n^(3/2). - Vaclav Kotesovec, May 28 2018
Comments