cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229332 Total sum of 10th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 1026, 60077, 1110704, 10936407, 72573360, 365983991, 1513288698, 5365004410, 16877063274, 48105808222, 126584890148, 310963328163, 721354362186, 1590587613754, 3359058693214, 6822189191429, 13396265918970, 25501949210562, 47248199227946, 85355336473378
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 10th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^10}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
In general, column k>0 of A213191 is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 28 2018

Crossrefs

Column k=10 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^10])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^10*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^10, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{j=k..n} A066633(n,k) * k^10.
G.f.: g(x) = (Sum_{k>=1} k^10*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 7054387200*sqrt(2)*Zeta(11)/Pi^11 * exp(Pi*sqrt(2*n/3)) * n^(9/2). - Vaclav Kotesovec, May 28 2018