A229341 a(n) = tau(n'), the number of divisors of the arithmetic derivative of n.
1, 1, 3, 1, 2, 1, 6, 4, 2, 1, 5, 1, 3, 4, 6, 1, 4, 1, 8, 4, 2, 1, 6, 4, 4, 4, 6, 1, 2, 1, 10, 4, 2, 6, 12, 1, 4, 5, 6, 1, 2, 1, 10, 4, 3, 1, 10, 4, 6, 6, 8, 1, 5, 5, 6, 4, 2, 1, 6, 1, 4, 4, 14, 6, 2, 1, 12, 4, 2, 1, 12, 1, 4, 4, 10, 6, 2, 1, 10, 12, 2, 1, 6, 4, 6
Offset: 2
Keywords
Examples
For n=4, tau(n')=tau(4)=3. For n=5, tau(n')=tau(1)=1.
Links
- Antti Karttunen, Table of n, a(n) for n = 2..65537
Programs
-
GAP
List(List(List([2..10^2],Factors),i->Product(i)*Sum(i,j->1/j)),Tau); # Muniru A Asiru, Mar 05 2018
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose@ FactorInteger@ n}, If[PrimeQ@n, 1, Total[n*f[[2]]/f[[1]]]]]; (* see A003415 *); f[n_] := DivisorSigma[0, dn@ n]; Array[f, 85, 2] (* Robert G. Wilson v, Mar 12 2018 *)
-
PARI
rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1];));} a(n) = numdiv(rd(n)); \\ Michel Marcus, Sep 24 2013