A229344 Mertens's function of the arithmetic derivative of n: a(n) = M(n'), a(1) = 0.
0, 1, 1, -1, 1, -2, 1, -2, -1, -2, 1, -1, 1, -2, -2, -4, 1, -2, 1, -2, -1, -3, 1, -3, -1, -1, -1, -4, 1, -4, 1, -4, -2, -3, -2, -1, 1, -2, -1, -2, 1, -1, 1, -3, 0, -2, 1, -4, -2, -3, -3, -2, 1, -4, -1, -1, -1, -4, 1, -1, 1, -3, -2, -5, -2, -2, 1, -3, -1, -1, 1, -1, 1, 0, -2, -4, -2, -3, 1, -4, -3, -3, 1, -1, -1, -3, -4, -4, 1
Offset: 1
Keywords
Examples
For n=4, M(n') = M(4') = M(4) = -1. For n=7, M(n') = M(7') = M(1) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
Array[Total@ Map[MoebiusMu, Range@ If[Abs@ # < 2, 0, # Total[#2/#1 & @@@ FactorInteger[Abs@ #]]]] &, 89] (* Michael De Vlieger, Nov 01 2017 *)
-
PARI
rd(n) = {local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1];));} a(n) = mertens(rd(n)); \\ Michel Marcus, Sep 24 2013
-
PARI
A002321(n) = sum(k=1, n, moebius(k)); A003415(n) = { my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From Michael B. Porter, Nov 25 2009 A229344(n) = if(1==n,0,A002321(A003415(n))); \\ Antti Karttunen, Nov 01 2017
Extensions
Description and formula clarified and more terms added by Antti Karttunen, Nov 01 2017
Comments