cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A323846 Array read by antidiagonals: T(m,n) = number of m X n matrices M with entries {0,1,2} that have M_{1,1}=0, M_{m,n}=2, are such that the rows and columns are monotonic without jumps of 2, and satisfy M_{(i+1),(j+1)} = M_{i,j} + (0 or 1).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 3, 4, 4, 3, 6, 16, 25, 16, 6, 10, 41, 94, 94, 41, 10, 15, 85, 266, 386, 266, 85, 15, 21, 155, 632, 1247, 1247, 632, 155, 21, 28, 259, 1332, 3423, 4657, 3423, 1332, 259, 28, 36, 406, 2570, 8342, 14795, 14795, 8342, 2570, 406, 36, 45, 606, 4631, 18546, 41586, 54219, 41586, 18546, 4631, 606, 45
Offset: 1

Views

Author

N. J. A. Sloane, Feb 06 2019

Keywords

Comments

The monotonicity condition requires that M_{(i+1),j} = M_{i,j} + (0 or 1); M_{i,(j+1)} = M_{i,j} + (0 or 1).
These matrices can be cut into three connected pieces, containing the 0's, 1's, and 2's; there are two vertex-disjoint paths from the north-and-east edges of the matrix to the south-and-west edges.
Row (or column) n >= 1 has a linear recurrence (with constant coefficients) of order 2n+1. - Alois P. Heinz, Feb 07 2019

Examples

			Array begins:
    0   0    1    3     6    10 ...
    0   0    4   16    41    85 ...
    1   4   25   94   266   632 ...
    3  16   94  386  1247  3423 ...
    6  41  266 1247  4657 14795 ...
   10  85  632 3427 14795 54219 ...
...
The 4 examples when m=2 and n=3 are
    011   011  012   012
    012   112  012   112
		

References

  • D. E. Knuth, Email to N. J. A. Sloane, Feb 05 2019.

Crossrefs

Main diagonal gives A306322.

Extensions

More terms from Alois P. Heinz, Feb 07 2019

A229421 Number of n X n 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

3, 12, 83, 754, 7816, 87648, 1037193, 12768612, 162034856, 2106287556, 27919532994, 376116911288, 5136301331502, 70961712401226, 990271481453131, 13940677426765198, 197768065242681646, 2824828320413979786, 40595088421065998006, 586585037559246948950
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Examples

			Some solutions for n=4
..1..1..0..0....1..1..1..1....0..0..0..0....2..2..1..1....2..1..1..0
..1..1..0..0....2..1..1..1....1..1..0..0....2..2..2..1....2..1..1..0
..2..1..1..0....2..2..1..1....2..1..1..1....2..2..2..1....2..1..1..1
..2..1..1..0....2..2..2..1....2..2..2..1....2..2..2..2....2..2..2..2
		

Crossrefs

Diagonal of A229428.

Extensions

a(16)-a(20) from Alois P. Heinz, Feb 08 2019

A229422 Number of n X 2 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

5, 12, 27, 55, 102, 175, 282, 432, 635, 902, 1245, 1677, 2212, 2865, 3652, 4590, 5697, 6992, 8495, 10227, 12210, 14467, 17022, 19900, 23127, 26730, 30737, 35177, 40080, 45477, 51400, 57882, 64957, 72660, 81027, 90095, 99902, 110487, 121890, 134152
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Examples

			Some solutions for n=4:
..0..0....0..0....1..0....0..0....1..1....1..0....0..0....0..0....2..2....0..0
..0..0....1..0....1..0....0..0....2..1....2..1....0..0....1..1....2..2....1..1
..1..1....1..1....1..1....0..0....2..1....2..1....1..0....1..1....2..2....2..2
..2..2....2..1....2..1....1..1....2..2....2..1....1..0....2..1....2..2....2..2
		

Crossrefs

Column 2 of A229428.

Formula

Empirical: a(n) = (1/24)*n^4 + (5/12)*n^3 + (11/24)*n^2 + (25/12)*n + 2.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(5 - 13*x + 17*x^2 - 10*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A229423 Number of n X 3 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

8, 27, 83, 222, 524, 1116, 2187, 4005, 6936, 11465, 18219, 27992, 41772, 60770, 86451, 120567, 165192, 222759, 296099, 388482, 503660, 645912, 820091, 1031673, 1286808, 1592373, 1956027, 2386268, 2892492, 3485054, 4175331, 4975787, 5900040, 6962931
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Examples

			Some solutions for n=4:
..1..0..0....1..1..0....0..0..0....1..1..1....1..0..0....0..0..0....1..0..0
..2..1..1....2..1..0....1..1..0....1..1..1....2..1..1....1..1..0....2..1..0
..2..1..1....2..2..1....1..1..1....1..1..1....2..2..1....1..1..0....2..1..1
..2..2..1....2..2..1....1..1..1....1..1..1....2..2..2....1..1..1....2..2..2
		

Crossrefs

Column 3 of A229428.

Formula

Empirical: a(n) = (1/360)*n^6 + (1/20)*n^5 + (5/18)*n^4 + (2/3)*n^3 + (799/360)*n^2 + (107/60)*n + 3.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(8 - 29*x + 62*x^2 - 72*x^3 + 48*x^4 - 18*x^5 + 3*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A229424 Number of n X 4 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

12, 55, 222, 754, 2204, 5700, 13345, 28794, 58053, 110550, 200533, 348855, 585211, 950897, 1502166, 2314261, 3486210, 5146473, 7459536, 10633552, 14929134, 20669410, 28251455, 38159220, 50978083, 67411152, 88297455, 114632157
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Examples

			Some solutions for n=4:
..2..2..1..0....1..1..0..0....2..1..0..0....1..1..1..0....1..0..0..0
..2..2..2..1....2..1..0..0....2..2..1..1....2..1..1..0....2..1..0..0
..2..2..2..1....2..1..1..1....2..2..1..1....2..2..1..0....2..1..1..1
..2..2..2..1....2..2..2..2....2..2..2..2....2..2..2..1....2..1..1..1
		

Crossrefs

Column 4 of A229428.

Formula

Empirical: a(n) = (1/8064)*n^8 + (1/288)*n^7 + (103/2880)*n^6 + (17/90)*n^5 + (751/1152)*n^4 + (571/288)*n^3 + (7769/3360)*n^2 + (153/40)*n + 3.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(12 - 53*x + 159*x^2 - 272*x^3 + 302*x^4 - 222*x^5 + 103*x^6 - 27*x^7 + 3*x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)

A229425 Number of n X 5 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

17, 102, 524, 2204, 7816, 24126, 66503, 166972, 387738, 842802, 1731129, 3385828, 6344979, 11451106, 19987862, 33864276, 55858927, 89938670, 141669058, 218736396, 331604442, 494332150, 725582545, 1049856844, 1498992304
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0..0....1..0..0..0..0....1..1..0..0..0....2..2..1..1..0
..0..0..0..0..0....1..1..0..0..0....1..1..0..0..0....2..2..1..1..0
..1..1..1..1..0....2..1..1..0..0....2..1..1..1..0....2..2..2..2..1
..2..1..1..1..0....2..2..1..0..0....2..2..1..1..0....2..2..2..2..1
		

Crossrefs

Column 5 of A229428.

Formula

Empirical: a(n) = (1/259200)*n^10 + (1/6480)*n^9 + (149/60480)*n^8 + (163/7560)*n^7 + (10411/86400)*n^6 + (1063/2160)*n^5 + (19597/12960)*n^4 + (4169/1620)*n^3 + (30649/6300)*n^2 + (215/63)*n + 4.
Conjectures from Colin Barker, Sep 15 2018: (Start)
G.f.: x*(17 - 85*x + 337*x^2 - 755*x^3 + 1172*x^4 - 1284*x^5 + 987*x^6 - 525*x^7 + 186*x^8 - 40*x^9 + 4*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)

A229426 Number of n X 6 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

23, 175, 1116, 5700, 24126, 87648, 281016, 812352, 2152643, 5297329, 12231874, 26724490, 55625600, 110928984, 212948248, 395089316, 710860767, 1243965435, 2122565928, 3539121568, 5777563514, 9250018192, 14545817232, 22496156480
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Comments

Column 6 of A229428.

Examples

			Some solutions for n=4
..2..2..1..0..0..0....1..0..0..0..0..0....2..2..1..1..1..0....2..2..2..1..1..1
..2..2..1..1..1..0....2..1..0..0..0..0....2..2..1..1..1..0....2..2..2..1..1..1
..2..2..1..1..1..0....2..1..0..0..0..0....2..2..2..1..1..0....2..2..2..1..1..1
..2..2..2..1..1..0....2..2..1..1..0..0....2..2..2..1..1..0....2..2..2..2..1..1
		

Crossrefs

Cf. A229428.

Formula

Empirical: a(n) = (1/11404800)*n^12 + (1/211200)*n^11 + (37/345600)*n^10 + (143/103680)*n^9 + (27977/2419200)*n^8 + (83399/1209600)*n^7 + (321133/1036800)*n^6 + (35291/34560)*n^5 + (66941/28800)*n^4 + (614843/129600)*n^3 + (149511/30800)*n^2 + (19627/3465)*n + 4.

A229427 Number of nX7 0..2 arrays with horizontal differences mod 3 never 1, vertical differences mod 3 never -1, rows lexicographically nondecreasing, and columns lexicographically nonincreasing.

Original entry on oeis.org

30, 282, 2187, 13345, 66503, 281016, 1037193, 3420692, 10260128, 28379127, 73192023, 177601008, 408454945, 895812869, 1883191437, 3811219431, 7453126082, 14128822736, 26035706883, 46749593643, 81969420795, 140605855270
Offset: 1

Views

Author

R. H. Hardin Sep 22 2013

Keywords

Comments

Column 7 of A229428

Examples

			Some solutions for n=4
..1..1..0..0..0..0..0....1..1..1..1..0..0..0....1..1..0..0..0..0..0
..1..1..0..0..0..0..0....2..1..1..1..0..0..0....1..1..1..1..0..0..0
..1..1..0..0..0..0..0....2..2..2..1..1..0..0....2..2..1..1..1..1..1
..1..1..0..0..0..0..0....2..2..2..1..1..0..0....2..2..2..2..2..2..1
		

Formula

Empirical: a(n) = (1/660441600)*n^14 + (1/9434880)*n^13 + (1/311850)*n^12 + (283/4989600)*n^11 + (23/34560)*n^10 + (5/896)*n^9 + (55843/1587600)*n^8 + (154153/907200)*n^7 + (4503127/7257600)*n^6 + (1244953/725760)*n^5 + (56059/14400)*n^4 + (1646347/302400)*n^3 + (401116003/50450400)*n^2 + (124079/24024)*n + 5
Showing 1-8 of 8 results.