cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A252876 T(n,k) = Number of n X k nonnegative integer arrays with upper left 0 and lower right n+k-4 and value increasing by 0 or 1 with every step right or down.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 8, 8, 3, 6, 26, 44, 26, 6, 10, 61, 153, 153, 61, 10, 15, 120, 413, 615, 413, 120, 15, 21, 211, 949, 1953, 1953, 949, 211, 21, 28, 343, 1948, 5281, 7313, 5281, 1948, 343, 28, 36, 526, 3676, 12686, 23203, 23203, 12686, 3676, 526, 36, 45, 771, 6497, 27805, 64920, 85801, 64920, 27805, 6497, 771, 45
Offset: 1

Views

Author

R. H. Hardin, Dec 24 2014

Keywords

Comments

Table starts
..0...0.....1......3......6......10.......15........21........28.........36
..0...1.....8.....26.....61.....120......211.......343.......526........771
..1...8....44....153....413.....949.....1948......3676......6497......10894
..3..26...153....615...1953....5281....12686.....27805.....56624.....108549
..6..61...413...1953...7313...23203....64920....164399....383735.....836797
.10.120...949...5281..23203...85801...277585....806347...2142634....5281314
.15.211..1948..12686..64920..277585..1030330...3407823..10237249...28340232
.21.343..3676..27805.164399..806347..3407823..12742873..42993671..132872804
.28.526..6497..56624.383735.2142634.10237249..42993671.161937617..555632319
.36.771.10894.108549.836797.5281314.28340232.132872804.555632319.2105918045

Examples

			Some solutions for n=3 k=4
..0..1..1..1....0..0..1..1....0..1..2..3....0..0..1..1....0..0..1..1
..1..1..2..2....0..1..1..2....1..1..2..3....0..0..1..2....0..1..2..2
..1..1..2..3....1..2..2..3....1..2..2..3....1..1..2..3....1..1..2..3
		

Crossrefs

Columns 1-7 give: A000217(n-2), A252870, A252871, A252872, A252873, A252874, A252875.
Main diagonal is A252869.

Formula

Empirical for column k:
k=1: a(n) = (1/2)*n^2 - (3/2)*n + 1
k=2: a(n) = (1/24)*n^4 + (5/12)*n^3 - (13/24)*n^2 - (11/12)*n + 1,
k=3: [polynomial of degree 6]
k=4: [polynomial of degree 8]
k=5: [polynomial of degree 10]
k=6: [polynomial of degree 12]
k=7: [polynomial of degree 14]
Empirical: with "n+k-3" instead of "n+k-4" T(n,k) = binomial(n+k,k) - 2.

A306322 Number of n X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{n,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 0, 0, 25, 386, 4657, 54219, 642815, 7852836, 98755951, 1273299491, 16761968919, 224508932229, 3051075581019, 41979207169125, 583745779595077, 8192478969914858, 115908383594664493, 1651636256584103013, 23685002515500875105, 341589590792856093329
Offset: 0

Views

Author

Alois P. Heinz, Feb 07 2019

Keywords

Crossrefs

Main diagonal of A323846.
Column d=2 of A323848.

Programs

  • Mathematica
    Nara[i_, j_] := 1/(i+j-1)*Binomial[i+j-1, i]*Binomial[i+j-1, i-1];
    Prepend[Table[2*Sum[Sum[Nara[i, j], {i, n}] + (n-j-1)*Nara[j, n], {j, n}] - 2*Binomial[2*n, n] + Nara[n, n] + 3, {n, 100}], 1] (* Manuel Kauers and Christoph Koutschan, Mar 02 2023 *)

Formula

From Manuel Kauers and Christoph Koutschan, Mar 02 2023: (Start)
a(n) = 2*Sum_{j=1..n} (Sum_{i=1..n} N'(i, j) + (n-j-1)*N'(j, n)) - 2*binomial(2*n, n) + N'(n, n) + 3 for n>0, where N'(n, k) = (binomial(n+k-1, n-1)*binomial(n+k-1, n))/(n+k-1) denotes the Narayana number N(n+k-1, k).
Recurrence: -2*(n+3)*(n+4)^2*(2*n+7)*(118125*n^10 + 1308375*n^9 + 6016950*n^8 + 14827410*n^7 + 20875365*n^6 + 15986367*n^5 + 4449768*n^4 - 2342808*n^3 - 2279152*n^2 - 660240*n - 64000)*a(n+4) + (n+3)*(10040625*n^13 + 210555000*n^12 + 1942194375*n^11 + 10361592450*n^10 + 35325144315*n^9 + 80085358620*n^8 + 121180651809*n^7 + 117919810482*n^6 + 64349576684*n^5 + 7017979960*n^4 - 14571577344*n^3 - 9566235392*n^2 - 2428639744*n - 221347840)*a(n+3) + (-42170625*n^14 - 981642375*n^13 - 10209053025*n^12 - 62559627795*n^11 - 250621464735*n^10 - 687475711989*n^9 - 1311094658043*n^8 - 1718884004625*n^7 - 1471227292164*n^6 - 691541238960*n^5 - 14462120192*n^4 + 188403075920*n^3 + 108128100864*n^2 + 25779317504*n + 2257059840)*a(n+2) + 2*(2*n+3)*(10040625*n^13 + 215870625*n^12 + 2048259375*n^11 + 11279217825*n^10 + 39828085965*n^9 + 93825035775*n^8 + 147951032109*n^7 + 150478534491*n^6 + 86482913102*n^5 + 11547320420*n^4 - 18788310824*n^3 - 12713618176*n^2 - 3178474112*n - 272670720)*a(n+1) - 8*n*(2*n-1)*(2*n+1)*(2*n+3)*(118125*n^10 + 2489625*n^9 + 23107950*n^8 + 124239510*n^7 + 427851585*n^6 + 984186117*n^5 + 1527319428*n^4 + 1572814284*n^3 + 1022652512*n^2 + 375620224*n + 58236160)*a(n) = 0. (End)
a(n) ~ 25 * 2^(4*n - 3) / (9*Pi*n^2) . - Vaclav Kotesovec, Mar 08 2023

A323847 a(n) = (n-1)*(n-2)*(n^2+9*n+12)/24.

Original entry on oeis.org

1, 0, 0, 4, 16, 41, 85, 155, 259, 406, 606, 870, 1210, 1639, 2171, 2821, 3605, 4540, 5644, 6936, 8436, 10165, 12145, 14399, 16951, 19826, 23050, 26650, 30654, 35091, 39991, 45385, 51305, 57784, 64856, 72556, 80920, 89985, 99789, 110371, 121771, 134030, 147190
Offset: 0

Views

Author

N. J. A. Sloane, Feb 06 2019

Keywords

Comments

Row 2 of array in A323846.

Crossrefs

Cf. A323846.

Programs

  • Mathematica
    A323847[n_]:=(n-1)(n-2)(n^2+9n+12)/24;Array[A323847,100,0] (* or *)
    LinearRecurrence[{5,-10,10,-5,1},{1,0,0,4,16},100] (* Paolo Xausa, Nov 15 2023 *)

Formula

G.f.: (x^4-6*x^3+10*x^2-5*x+1)/(1-x)^5. - Alois P. Heinz and Don Knuth, Feb 06 2019

Extensions

More terms from Alois P. Heinz, Feb 06 2019
Edited with new offset by N. J. A. Sloane, Feb 07 2019 following a suggestion from Don Knuth.

A323967 Number of 3 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{3,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 1, 4, 25, 94, 266, 632, 1332, 2570, 4631, 7900, 12883, 20230, 30760, 45488, 65654, 92754, 128573, 175220, 235165, 311278, 406870, 525736, 672200, 851162, 1068147, 1329356, 1641719, 2012950, 2451604, 2967136, 3569962, 4271522, 5084345, 6022116, 7099745
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 3 of array in A323846.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, 2+((((((n+12)*n+55)*n+120)*n-236)*n-312)*n)/360):
    seq(a(n), n=0..40);

Formula

G.f.: -(x^7-5*x^6+7*x^5+3*x^4-17*x^3+18*x^2-6*x+1)/(x-1)^7.
a(n) = 2+((((((n+12)*n+55)*n+120)*n-236)*n-312)*n)/360 for n > 0, a(0) = 1.

A323968 Number of 4 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{4,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 3, 16, 94, 386, 1247, 3423, 8342, 18546, 38304, 74451, 137503, 243103, 413858, 681632, 1090365, 1699493, 2588049, 3859530, 5647620, 8122864, 11500393, 16048805, 22100312, 30062268, 40430198, 53802453, 70896621, 92567829, 119829076, 153873742, 196100423
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 4 of array in A323846.

Programs

  • Maple
    a:= n-> `if`(n=0, 1, 3+((((((((5*n+100)*n+826)*n+4984)*n+15925)*n
              +20020)*n-16756)*n-25104)*n)/40320):
    seq(a(n), n=0..35);

Formula

G.f.: -(2*x^9-15*x^8+47*x^7-78*x^6+65*x^5-10*x^4-26*x^3+25*x^2-6*x+1)/(x-1)^9.

A323969 Number of 5 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{5,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 6, 41, 266, 1247, 4657, 14795, 41586, 106067, 249814, 550334, 1145148, 2268140, 4302757, 7857830, 13873160, 23763590, 39612078, 64424311, 102459670, 159655885, 244167521, 367041525, 543056454, 791755709, 1138709134, 1617041716, 2269272856, 3149514786
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 5 of array in A323846.

Formula

G.f.: -(3*x^11 -29*x^10 +125*x^9 -314*x^8 +501*x^7 -517*x^6 +323*x^5 -84*x^4 -20*x^3 +30*x^2 -5*x+1) / (x-1)^11.

A323970 Number of 6 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{6,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 10, 85, 632, 3423, 14795, 54219, 174844, 508484, 1357051, 3367166, 7846507, 17311702, 36401032, 73344164, 142259423, 266651159, 484610624, 856389171, 1475218962, 2482510921, 4088870385, 6602746625, 10468982846, 16320069070, 25043533065, 37869646820
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 6 of array in A323846.

Formula

G.f.: -(4*x^13 -47*x^12 +253*x^11 -822*x^10 +1788*x^9 -2728*x^8 +2958*x^7 -2253*x^6 +1145*x^5 -308*x^4 +21*x^3 +33*x^2 -3*x+1) / (x-1)^13.

A323971 Number of 7 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{7,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 15, 155, 1332, 8342, 41586, 174844, 642815, 2117690, 6362806, 17671203, 45844681, 112047610, 259796057, 574776968, 1219349012, 2490738686, 4916477305, 9406990883, 17494038498, 31695618318, 56063910644, 96993880940, 164397619093, 273384891666, 446635565576
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 7 of array in A323846.

Formula

G.f.: -(5*x^15 -69*x^14 +443*x^13 -1750*x^12 +4744*x^11 -9317*x^10 +13630*x^9 -15026*x^8 +12430*x^7-7561*x^6 +3263*x^5-823*x^4 +127*x^3 +35*x^2+1) / (x-1)^15.

A323972 Number of 8 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{8,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 21, 259, 2570, 18546, 106067, 508484, 2117690, 7852836, 26400811, 81594028, 234380304, 631352789, 1606571023, 3885713191, 8979237218, 19912769178, 42540796862, 87841523926, 175820917355, 341996038445, 647926774508, 1197980968295, 2165529201795, 3833173915877
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 8 of array in A323846.

Formula

G.f.: -(6*x^17 -95*x^16 +707*x^15 -3278*x^14 +10588*x^13 -25239*x^12 +45878*x^11 -64775*x^10 +71619*x^9 -62024*x^8 +41650*x^7 -21151*x^6 +7977*x^5 -1820*x^4 +343*x^3 +38*x^2 +4*x+1) / (x-1)^17.

A323973 Number of 9 X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{9,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.

Original entry on oeis.org

1, 28, 406, 4631, 38304, 249814, 1357051, 6362806, 26400811, 98755951, 337852708, 1069253171, 3159851197, 8786784471, 23140533785, 58032604728, 139238130793, 320911139366, 712976624945, 1531659348507, 3190199728577, 6457722870812, 12731177730290, 24491108899982
Offset: 0

Views

Author

Alois P. Heinz, Feb 09 2019

Keywords

Crossrefs

Row (or column) 9 of array in A323846.
Showing 1-10 of 11 results. Next