A229468 Number T(n,k) of parts of each size k^2 in all partitions of n^2 into squares; triangle T(n,k), 1 <= k <= n, read by rows.
1, 4, 1, 15, 3, 1, 50, 11, 2, 1, 156, 35, 10, 4, 1, 460, 101, 36, 14, 4, 1, 1296, 298, 105, 44, 16, 6, 1, 3522, 798, 300, 130, 56, 23, 6, 1, 9255, 2154, 827, 377, 174, 82, 31, 9, 1, 23672, 5490, 2164, 1015, 502, 243, 108, 43, 10, 1, 59050, 13914, 5525, 2658, 1350, 705, 343, 154, 55, 13, 1
Offset: 1
Examples
For n = 3, the 4 partitions are: Square side 1 2 3 9 0 0 5 1 0 1 2 0 0 0 1 Total 15 3 1 So T(3,1) = 15, T(3,2) = 3, T(3,3) = 1. The triangle begins: .\ k 1 2 3 4 5 6 7 8 9 ... .n .1 1 .2 4 1 .3 15 3 1 .4 50 11 2 1 .5 156 35 10 4 1 .6 460 101 36 14 4 1 .7 1296 298 105 44 16 6 1 .8 3522 798 300 130 56 23 6 1 .9 9255 2154 827 377 174 82 31 9 1 10 23672 5490 2164 1015 502 243 108 43 10 ... 11 59050 13914 5525 2658 1350 705 343 154 55 ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened (Rows n = 1..21 from Christopher Hunt Gribble)
- Christopher Hunt Gribble, C++ program
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1+n*x, b(n, i-1)+ `if`(i^2>n, 0, (g->g+coeff(g, x, 0)*x^i)(b(n-i^2, i)))) end: T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n^2, n)): seq(T(n), n=1..14); # Alois P. Heinz, Sep 24 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1+n*x, b[n, i-1] + If[i^2>n, 0, Function[ {g}, g+Coefficient[g, x, 0]*x^i][b[n-i^2, i]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, 1, n}]][ b[n^2, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
Formula
Sum_{k=1..n} T(n,k) * k^2 = A037444(n) * n^2.