A229493 Irregular triangle in which row n has numbers k such that prime(n) divides A001008(k), the numerator of the k-th harmonic number.
2, 7, 22, 4, 20, 24, 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728, 3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888, 958, 962, 966, 1291, 1293, 9328, 9331, 9335, 9338, 9376, 9378, 10583, 10587, 10591, 14205, 14207
Offset: 2
Examples
The irregular triangle begins: 2, 7, 22 4, 20, 24 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728 3, 7, 10, 77, 80, 84, 87, 110, 113, 117, 120, 848, 852, 856, 882, 888,...
Links
- David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302. [WARNING: Table 2 contains miscalculations for p=19, 47, 59, ... - _Max Alekseyev_, Oct 23 2012]
- A. Eswarathasan and E. Levine, p-integral harmonic sums, Discrete Math. 91 (1991), 249-257.
- C. Sanna, On the p-adic valuation of harmonic numbers, J. Number Theory 166 (2016), 41-46.
Programs
-
Mathematica
(* rows 2, 3, and part of 4 *) h = ParallelTable[Numerator[HarmonicNumber[i]], {i, 10000}]; Flatten[Table[Position[h, _?(Mod[#, p] == 0 &)], {p, {3, 5, 7}}]]
Comments