A110544 Decimal expansion of -Integral {x=1..2} log gamma(x) dx.
0, 8, 1, 0, 6, 1, 4, 6, 6, 7, 9, 5, 3, 2, 7, 2, 5, 8, 2, 1, 9, 6, 7, 0, 2, 6, 3, 5, 9, 4, 3, 8, 2, 3, 6, 0, 1, 3, 8, 6, 0, 2, 5, 2, 6, 3, 6, 2, 2, 1, 6, 5, 8, 7, 1, 8, 2, 8, 4, 8, 4, 5, 9, 5, 1, 7, 2, 3, 4, 3, 0, 4, 0, 7, 2, 7, 3, 9, 6, 0, 2, 3, 0, 5, 2, 5, 6, 7, 0, 1, 3, 6, 4, 0, 4, 5, 8, 0, 2, 3, 7, 7, 9, 9, 4, 3
Offset: 0
Examples
0.081061466795327258219670263594382360138602526362216587182848459...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.21, p. 168.
Links
- Rafael Jakimczuk, Two Topics in Number Theory: Products Related with the e Number and Sum of Subscripts in Prime Numbers, ResearchGate, May 2025. See p. 2, the constant C in eq. (2.1).
- Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), p. 39, eq. (1.8.1).
- Eric Weisstein's World of Mathematics, Log Gamma Function.
- Eric Weisstein's World of Mathematics, Gamma Function.
Programs
-
Mathematica
RealDigits[ N[ -Integrate[ Log[ Gamma[ x]], {x, 1, 2}], 128], 10, 128] RealDigits[ 1/2*Log[2*Pi]-1, 10, 105] // First // Prepend[#, 0]& (* Jean-François Alcover, Jun 10 2013 *)
-
PARI
-intnum(x=1, 2, log(gamma(x))) \\ Michel Marcus, Jul 05 2020
Formula
Equals zeta'(0)+1 = -1/2*log(2*Pi)+1. - Jean-François Alcover, Jun 10 2013
From Amiram Eldar, Jul 05 2020: (Start)
Equals Sum_{k>=2} (1/(k + 1) - 1/(2*k))*(zeta(k)-1).
Equals Integral_{x=0..1} (1/2 - 1/(1 - x) - 1/log(x)) dx/log(x). (End)
Equals -Integral_{x=1..oo} ({x}-1/2)/x dx, where {.} is the fractional part [Nahin]. - R. J. Mathar, May 16 2024
Equals log(2) - (gamma+1)/2 - Sum_{k>=2} (-1)^k*(zeta(k)-1)/(k+1), where gamma is Euler's constant (A001620) (Jakimczuk, 2025). - Amiram Eldar, May 30 2025
Comments