cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229547 Numbers n such that n - product_of_digits(n) is a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 34, 46, 57, 61, 78, 82, 93, 101, 129, 143, 187, 202, 218, 226, 244, 247, 252, 269, 294, 297, 303, 319, 336, 348, 357, 361, 364, 386, 404, 412, 419, 437, 453, 462, 488, 505, 514, 519, 524, 534, 539, 544, 554, 564, 574, 584, 594, 597, 606, 613, 615, 617, 619, 625, 635, 638, 645, 655, 663
Offset: 1

Views

Author

Derek Orr, Sep 26 2013

Keywords

Examples

			143 - (1*4*3) = 131 (a palindrome). So, 143 is a member of the sequence.
		

Crossrefs

Cf. A070565.

Programs

  • Mathematica
    f[n_] := Block[{d = n - Times @@ IntegerDigits@ n}, d == FromDigits@ Reverse[IntegerDigits@ d]]; Select[Range[0, 1000], f] (* Michael De Vlieger, Mar 12 2015 *)
  • PARI
    for(n=0,10^3,d=digits(n);p=prod(i=1,#d,d[i]);if(Vecrev(digits(n-p))==digits(n-p),print1(n,", "))) \\ Derek Orr, Mar 12 2015
  • Python
    def rev(n):
        return int(''.join(reversed(str(n))))
    def DP(n):
        p = 1
        for i in str(n):
            p *= int(i)
        return p
    {print(n, end=', ') for n in range(10**3) if n-DP(n)==rev(n-DP(n))}
    # Simplified by Derek Orr, Mar 12 2015
    

Extensions

More terms from Derek Orr, Mar 12 2015