A229555 An exotic continued fraction for the real root of 6y^3 + 4y^2 - 4y - 7.
1, 22, 1, 31, 2, 3, 1, 63, 1, 10, 1, 2, 1, 7, 1, 160905, 2, 1, 4, 58, 2, 2, 1, 2, 1, 7, 3, 1, 3, 1, 4, 3, 1, 47, 1, 214540, 1, 2, 9, 1, 45, 1, 3, 1, 48, 1, 21, 1, 9, 1, 8, 1, 2, 249610, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 20, 1, 4, 19, 1, 2, 1, 1, 1, 1, 3, 4, 1, 1, 1
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
Programs
-
Maple
Digits:=500: with(numtheory): x:=fsolve(6*y^3 + 4*y^2 - 4*y - 7); cfrac(x,200,'quotients');
-
Mathematica
r = Roots[6 x^3 + 4 x^2 - 4 x - 7 == 0, x][[1, 2]]; ContinuedFraction[r, 115] (* T. D. Noe, Oct 02 2013 *)
-
PARI
\p 250 contfrac(real(polroots(Pol([6,4,-4,-7]))[1])) \\ Charles R Greathouse IV, Oct 01 2013
Formula
y = ((2906 - 126*sqrt(3*163))^(1/3) + (2906 + 126*sqrt(3*163))^(1/3) - 4) / 18. - Andrey Zabolotskiy, Jan 21 2023
Comments