cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A229580 Number of defective 3-colorings of an n X 2 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

1, 6, 40, 224, 1152, 5632, 26624, 122880, 557056, 2490368, 11010048, 48234496, 209715200, 905969664, 3892314112, 16642998272, 70866960384, 300647710720, 1271310319616, 5360119185408, 22539988369408, 94557999988736
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
  0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 1   0 0
  0 0   2 0   0 1   0 2   1 0   2 2   1 2   2 1   0 2   1 2
  1 0   0 2   1 2   1 1   2 1   1 0   0 1   0 0   0 0   0 2
		

Crossrefs

Column 2 of A229586.

Formula

Empirical: a(n) = 8*a(n-1) - 16*a(n-2) for n>3.
a(n) = 4*a(n-1) + 4^(n-1) for n > 2. - Gerald Hillier, May 01 2018
a(n) = (2n - 1)*2^(2n - 3) for n > 1 [Gerson W. Barbosa]. - Gerald Hillier, May 02 2018
Empirical g.f.: x*(1 - 2*x + 8*x^2) / (1 - 4*x)^2. - Colin Barker, May 02 2018
a(n) = A002064(2n-2) - A002064(2n-3) for n > 1. - Daniel Forgues, Aug 31 2018
Empirical: a(n) = Integral_{t>0} dt/Beta(n-t,n+t) for n > 1. - Gregory Gerard Wojnar, Feb 10 2024

A229581 Number of defective 3-colorings of an n X 3 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

2, 28, 264, 2160, 16416, 119232, 839808, 5785344, 39191040, 262020096, 1733363712, 11367641088, 74010599424, 478892113920, 3082323787776, 19747769352192, 126009575866368, 801195213717504, 5077997833420800, 32092946307219456
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..1....0..1..2....0..0..1....0..1..2....0..1..2....0..1..2....0..1..0
..0..2..1....0..1..2....1..0..2....2..1..0....2..0..1....0..1..0....2..1..0
..0..2..1....0..2..0....2..1..0....2..2..0....2..2..1....0..1..1....2..2..0
		

Crossrefs

Column 3 of A229586.

Formula

Empirical: a(n) = 12*a(n-1) - 36*a(n-2).
Conjectures from Colin Barker, Sep 19 2018: (Start)
G.f.: 2*(1 + 2*x) / (1 - 6*x)^2.
a(n) = 2^(n + 1) * 3^(n - 1) * (4*n + 3).
(End)

A229582 Number of defective 3-colorings of an n X 4 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

6, 116, 1620, 19764, 224532, 2440692, 25745364, 265720500, 2697594516, 27033340788, 268094978388, 2636009007156, 25732468879380, 249667710249204, 2409688805255892, 23151313964420532, 221538858133842324
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..0..1....0..1..1..2....0..1..0..2....0..1..2..1....0..1..2..0
..0..2..1..2....0..2..0..2....0..1..0..2....0..1..0..1....1..0..1..0
..1..0..1..0....0..2..1..0....1..2..1..2....1..2..0..2....1..2..1..0
		

Crossrefs

Column 4 of A229586.

Formula

Empirical: a(n) = 18*a(n-1) - 81*a(n-2) for n>3.
Conjectures from Colin Barker, Sep 19 2018: (Start)
G.f.: 2*x*(3 + 4*x + 9*x^2) / (1 - 9*x)^2.
a(n) = 4 * 9^(n - 2) * (16*n - 3) for n>1.
(End)

A229583 Number of defective 3-colorings of an n X 5 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

16, 444, 9156, 167364, 2865780, 47091780, 752194836, 11768185764, 181223769204, 2756144066436, 41496027416532, 619575164338788, 9186393069102132, 135397538308042308, 1985403434065601940, 28983255427638399780
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..0..2..1....0..1..0..1..0....0..1..0..1..0....0..1..0..1..0
..0..1..1..2..1....0..1..2..1..2....0..1..0..2..1....0..1..2..1..1
..0..2..0..2..1....0..0..2..1..2....2..1..1..2..0....0..1..0..2..0
		

Crossrefs

Column 5 of A229586.

Formula

Empirical: a(n) = 30*a(n-1) - 261*a(n-2) + 540*a(n-3) - 324*a(n-4).
Empirical g.f.: 4*x*(4 - 9*x + 3*x^2 - 18*x^3) / (1 - 15*x + 18*x^2)^2. - Colin Barker, Sep 19 2018

A229584 Number of defective 3-colorings of an n X 6 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

40, 1620, 49848, 1375152, 35690460, 890824020, 21639043284, 515235810840, 12081465854052, 279877517457936, 6420164883723960, 146080173897129444, 3301145304079911108, 74165789377610689020, 1657889614174445634696
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..2..1..0..1....0..1..0..1..0..1....0..1..2..0..1..2....0..1..2..1..0..1
..0..1..2..0..2..1....2..1..2..1..2..0....2..0..2..0..0..2....2..0..2..1..0..1
..0..1..2..1..0..2....2..1..0..2..1..2....2..0..1..2..1..0....2..0..2..2..0..2
		

Crossrefs

Column 6 of A229586.

Formula

Empirical: a(n) = 50*a(n-1) - 805*a(n-2) + 4662*a(n-3) - 12150*a(n-4) + 14580*a(n-5) - 6561*a(n-6).
Empirical g.f.: 4*x*(10 - 95*x + 262*x^2 + 93*x^3 - 1485*x^4 + 1701*x^5) / (1 - 25*x + 90*x^2 - 81*x^3)^2. - Colin Barker, Sep 19 2018

A229585 Number of defective 3-colorings of an n X 7 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

96, 5724, 264300, 11035044, 435326724, 16551428868, 613195191972, 22285439501940, 798023885879412, 28242628279003332, 990013172442084324, 34429588531063458516, 1189375483329032617620, 40853134231990887545316
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Comments

Column 7 of A229586.

Examples

			Some solutions for n=3:
  0 1 2 0 1 0 2      0 1 0 2 1 2 1      0 1 2 0 1 0 1
  0 1 2 0 2 1 0      0 1 0 2 1 2 1      0 1 2 0 1 0 1
  2 1 2 1 2 1 1      0 2 0 2 1 2 2      0 2 1 0 2 0 2
		

Crossrefs

Cf. A229586.

Formula

Empirical: a(n) = 84*a(n-1) - 2466*a(n-2) + 31428*a(n-3) - 206469*a(n-4) + 750384*a(n-5) - 1513404*a(n-6) + 1574640*a(n-7) - 656100*a(n-8).

A229587 Number of defective 3-colorings of a 2 X n 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 6, 28, 116, 444, 1620, 5724, 19764, 67068, 224532, 743580, 2440692, 7951932, 25745364, 82904796, 265720500, 848179836, 2697594516, 8551948572, 27033340788, 85232507580, 268094978388, 841477302108, 2636009007156, 8242758323964
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Comments

Row 2 of A229586.

Examples

			Some solutions for n=3
..0..1..0....0..1..0....0..1..2....0..1..1....0..1..0....0..1..1....0..1..2
..2..1..1....2..2..1....2..1..1....0..2..0....0..1..1....0..2..1....1..0..2
		

Programs

  • Mathematica
    LinearRecurrence[{6,-9},{0,6,28,116},30] (* Harvey P. Dale, Mar 06 2023 *)

Formula

a(n) = 6*a(n-1) - 9*a(n-2) for n>4.
From Oboifeng Dira, Mar 04 2015: (Start)
a(n) = 4*(3^(n-2) + 4*(2*n-3)*3^(n-4)) for n>2.
G.f.: (x + x^3 + 2*x^4)/(1-3*x)^2 (except for first term).
(End)

A229588 Number of defective 3-colorings of a 3 X n 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 40, 264, 1620, 9156, 49848, 264300, 1374048, 7036116, 35600376, 178380156, 886616784, 4377006372, 21483378600, 104919416268, 510169843584, 2471194910580, 11929478452824, 57413851328028, 275566856985648
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..2....0..1..2....0..1..1....0..1..0....0..1..1....0..0..1....0..1..2
..0..2..1....0..1..2....2..0..1....2..0..2....0..2..0....2..0..1....2..1..2
..1..0..1....0..0..2....2..0..1....2..1..0....0..1..2....1..0..2....0..0..2
		

Crossrefs

Row 3 of A229586.

Formula

Empirical: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>6.
Empirical g.f.: 4*x^2*(10 - 34*x + 35*x^2 - 47*x^3 + 37*x^4) / (1 - 5*x + 2*x^2)^2. - Colin Barker, Sep 19 2018

A229589 Number of defective 3-colorings of a 4 X n 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 224, 2160, 19764, 167364, 1375152, 11035044, 87040260, 677327004, 5213798784, 39777273072, 301217858676, 2266655495148, 16964398022220, 126372108661164, 937513290523896, 6929886363153768, 51058923535878660, 375112065125492964
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Comments

Row 4 of A229586.

Examples

			Some solutions for n=3:
  0 1 0   0 0 1   0 1 0   0 1 0   0 1 0   0 1 2   0 0 1
  2 2 1   2 0 1   2 2 0   2 2 1   0 2 2   2 0 2   1 0 2
  1 0 1   1 2 1   0 2 1   0 2 0   0 1 2   1 0 1   2 1 2
  2 0 2   0 2 0   0 2 1   0 2 0   2 0 2   2 2 0   0 1 0
		

Crossrefs

Cf. A229586.

Formula

Empirical: a(n) = 18*a(n-1) - 111*a(n-2) + 282*a(n-3) - 333*a(n-4) + 180*a(n-5) - 36*a(n-6) for n > 12.

A229590 Number of defective 3-colorings of a 5 X n 0..2 array connected horizontally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 1152, 16416, 224532, 2865780, 35690460, 435326724, 5230362804, 62078234652, 729497509476, 8501915068020, 98397780931572, 1132075322344044, 12958123181386308, 147663327988334916, 1676107610928542292
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2013

Keywords

Comments

Row 5 of A229586.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 0   0 1 2   0 1 2   0 1 0   0 1 2
  0 2 0   2 1 1   1 2 0   0 1 0   0 1 0   0 1 2   2 0 1
  0 2 0   2 0 2   0 2 0   1 2 1   0 1 0   2 1 1   1 2 0
  0 2 1   2 0 1   1 2 0   1 0 2   0 2 0   2 0 1   1 2 0
  2 0 2   1 2 1   1 2 1   2 0 2   1 0 2   1 0 1   2 1 2
		

Crossrefs

Cf. A229586.

Formula

Empirical: a(n) = 32*a(n-1) - 384*a(n-2) + 2200*a(n-3) - 6494*a(n-4) + 9016*a(n-5) - 816*a(n-6) - 14888*a(n-7) + 18879*a(n-8) - 5464*a(n-9) - 7472*a(n-10) + 8336*a(n-11) - 3648*a(n-12) + 768*a(n-13) - 64*a(n-14) for n > 18.
Showing 1-10 of 13 results. Next