A229608 Square array read by antidiagonals downwards: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 2*p.
2, 5, 3, 11, 7, 13, 23, 17, 29, 19, 47, 37, 59, 41, 31, 97, 79, 127, 83, 67, 43, 197, 163, 257, 167, 137, 89, 53, 397, 331, 521, 337, 277, 179, 107, 61, 797, 673, 1049, 677, 557, 359, 223, 127, 71, 1597, 1361, 2099, 1361, 1117, 719, 449, 257, 149, 73, 3203
Offset: 1
Examples
Northwest corner: 2 5 11 23 47 97 197 3 7 17 37 79 163 331 13 29 59 127 257 521 1049 19 41 83 167 337 677 1361 31 67 137 277 557 1117 2237 43 89 179 359 719 1439 2879 53 107 223 449 907 1823 3659
Programs
-
Mathematica
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[2*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[2*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Extensions
Incorrect comment deleted and example extended by Peter Munn, Jul 30 2017
Comments