cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1).

Original entry on oeis.org

2, 5, 11, 23, 47, 97, 197, 397, 797, 1597, 3203, 6421, 12853, 25717, 51437, 102877, 205759, 411527, 823117, 1646237, 3292489, 6584983, 13169977, 26339969, 52679969, 105359939, 210719881, 421439783, 842879579, 1685759167, 3371518343
Offset: 1

Views

Author

N. J. A. Sloane, Jul 07 2000

Keywords

Comments

It appears that lim_{n->infinity} a(n)/2^n exists and is approximately 1.569985585.... - Franklin T. Adams-Watters, Nov 11 2011
This is a B_2 sequence. - Thomas Ordowski, Sep 23 2014 See the link.
Conjecture: lim_{n->infinity} a(n)/A006992(n) = 5.1648264... - Thomas Ordowski, Apr 05 2015

Crossrefs

Values of a(n)-2*a(n-1) in A163469. - Zak Seidov, Jul 28 2009
Cf. A065545 (with a(1)=3). - Zak Seidov, Feb 04 2016
Row 1 of A229608.

Programs

  • Maple
    A055496 := proc(n) option remember; if n=1 then 2 else nextprime(2*A055496(n-1)); fi; end;
  • Mathematica
    NextPrim[n_Integer] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; a[1] = 2; a[n_] := NextPrim[ 2*a[n - 1]]; Table[ a[n], {n, 1, 31} ]
    a[1]=2;a[n_]:=a[n]=Prime[PrimePi[2*a[n-1]]+1];Table[a[n],{n,40}] (* Zak Seidov, Feb 16 2006 *)
    NestList[ NextPrime[2*# ]&,2,100] (* Zak Seidov, Jul 28 2009 *)
  • PARI
    print1(a=2);for(n=2,20,print1(", ",a=nextprime(a+a))) \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n+1) = A060264(a(n)). - Peter Munn, Oct 23 2017

Extensions

Mathematica updated by Jean-François Alcover, Jun 19 2013

A194598 Union of A080359 and A164294.

Original entry on oeis.org

2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 131, 139, 151, 157, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 269, 271, 283, 293, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 571, 577, 593, 599, 601
Offset: 1

Views

Author

Vladimir Shevelev, Aug 30 2011

Keywords

Comments

Every greater of twin primes (A006512), beginning with 13, is in the sequence.
A very simple sieve for the generation of the terms is the following: Let p_n be the n-th prime. Consider consecutive intervals of the form (2p_n, 2p_{n+1}), n=1,2,... From every interval containing at least one prime we take the first one and remove it from the set of all primes. Then all remaining primes form the sequence. Let us demonstrate this sieve: For primes 2,3,5,7,11,... consider intervals (4,6), (6,10), (10,14), (14,22), (22,26), (26,34), ... . Removing from the set of all primes the first prime of each interval, i.e., 5,7,11,17,23,29,... ,we obtain 2,3,13,19,31, etc.
This sequence and A164368 are the mutually wrapping up sequences:
a(1) <= A164368(1) <= a(2) <= A164368(2) <= ...
Following the steps to generate T(n,1) in A229608 provides an alternate method of generating this sequence. - Bob Selcoe, Oct 27 2015

Crossrefs

If the first two terms are omitted we get A164333.

Programs

  • Mathematica
    primePiMax = 200;
    Join[{2, 3}, Select[Table[{(Prime[k-1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, primePiMax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ]&][[All, 2]]*2+1] (* Jean-François Alcover, Aug 18 2018 *)

Formula

First column of array A229608. - Bob Selcoe, Oct 27 2015
For n >= 3, a(n) = A164333(n-2). - Peter Munn, Aug 30 2017

A229607 Square array read by antidiagonals downwards in which each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 2*p.

Original entry on oeis.org

2, 3, 11, 5, 19, 17, 7, 37, 31, 29, 13, 73, 61, 53, 41, 23, 139, 113, 103, 79, 47, 43, 277, 223, 199, 157, 89, 59, 83, 547, 443, 397, 313, 173, 113, 67, 163, 1093, 883, 787, 619, 337, 223, 131, 71, 317, 2179, 1759, 1571, 1237, 673, 443, 257, 139, 97, 631
Offset: 1

Views

Author

Clark Kimberling, Sep 26 2013

Keywords

Comments

Conjectures: (row 1) = A006992, (column 1) = A104272, and for each row r(k), the limit of r(k)/2^k exists. For rows 1 to 4, the respective limits are 0.303976..., 4.249137..., 6.857407..., 12.235210... .
From Pontus von Brömssen, Jan 18 2025: (Start)
Regarding the conjectures above:
- Row 1 is A006992 by definition.
- Column 1 is A164368, not A104272. It seems that the first column would be A104272 if no duplicates were allowed, i.e., if the prime p in a row were followed by the largest prime < 2*p not in a previous row; see A380277.
- The existence of the limits should follow from a strong version of Bertrand's postulate. For row 1, see formula in A006992.
(End)

Examples

			Northwest corner:
   2,    3,    5,    7,   13,   23,   43,   83, ...
  11,   19,   37,   73,  139,  277,  547, 1093, ...
  17,   31,   61,  113,  223,  443,  883, 1759, ...
  29,   53,  103,  199,  397,  787, 1571, 3137, ...
  41,   79,  157,  313,  619, 1237, 2473, 4943, ...
  47,   89,  173,  337,  673, 1327, 2647, 5281, ...
		

Crossrefs

Programs

  • Mathematica
    seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[2*Last[arr1[1]], -1]], {seqL}]; Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[2*Last[arr1[z]], -1]], {seqL}], {z, 2, 12}]; m = Map[arr1, Range[12]]; m // TableForm
    t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)

Extensions

Incorrect comment deleted by Peter Munn, Aug 15 2017

A229609 Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 3*p.

Original entry on oeis.org

2, 5, 3, 13, 7, 11, 37, 19, 31, 17, 109, 53, 89, 47, 23, 317, 157, 263, 139, 67, 29, 947, 467, 787, 409, 199, 83, 41, 2837, 1399, 2357, 1223, 593, 241, 113, 43, 8501, 4177, 7069, 3659, 1777, 719, 337, 127, 59, 25471, 12527, 21193, 10973, 5323, 2153, 1009
Offset: 1

Views

Author

Clark Kimberling, Sep 26 2013

Keywords

Comments

Conjectures: (row 1) = A126031, (column 1) = A164952, and for each row r(k), the limit of r(k)/3^k exists. For rows 1 to 4, the respective limits are 0.431270..., 0.636059..., 3.229697..., 5.015914... .

Examples

			Northwest corner:
   2,  5,  13,  37,  109,  317, ...
   3,  7,  19,  53,  157,  467, ...
  11, 31,  89, 263,  787, 2357, ...
  17, 47, 139, 409, 1223, 3659, ...
  23, 67, 199, 593, 1777, 5323, ...
  29, 83, 241, 719, 2153, 6451, ...
		

Crossrefs

Programs

  • Mathematica
    seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[3*Last[arr1[1]], -1]], {seqL}];  Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[3*Last[arr1[z]], -1]], {seqL}], {z, 2, 22}]; m = Map[arr1, Range[22]]; m // TableForm
    t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)

Extensions

Incorrect comment deleted by Peter Munn, Aug 15 2017

A229610 Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p.

Original entry on oeis.org

2, 7, 3, 23, 11, 5, 71, 37, 17, 13, 223, 113, 53, 41, 19, 673, 347, 163, 127, 59, 29, 2027, 1049, 491, 383, 179, 89, 31, 6089, 3163, 1481, 1151, 541, 269, 97, 43, 18269, 9491, 4447, 3457, 1627, 809, 293, 131, 47, 54829, 28477, 13367, 10391, 4889, 2437, 881
Offset: 1

Views

Author

Clark Kimberling, Sep 26 2013

Keywords

Comments

Conjectures: (row 1) = A076656, (column 1) = A164958, and for each row r(k), the limit of r(k)/3^k exists. For rows 1 to 4, the respective limits are 0.928655..., 1.447047..., 2.038260..., 4.753271... .

Examples

			Northwest corner:
   2,  7,  23,  71,  223,  673, ...
   3, 11,  37, 113,  347, 1049, ...
   5, 17,  53, 163,  491, 1481, ...
  13, 41, 127, 383, 1151, 3457, ...
  19, 59, 179, 541, 1627, 4889, ...
  29, 89, 269, 809, 2437, 7331, ...
		

Crossrefs

Programs

  • Mathematica
    seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
    t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)

Extensions

Incorrect comment deleted by Peter Munn, Aug 15 2017
Showing 1-5 of 5 results.