A055496
a(1) = 2; a(n) is smallest prime > 2*a(n-1).
Original entry on oeis.org
2, 5, 11, 23, 47, 97, 197, 397, 797, 1597, 3203, 6421, 12853, 25717, 51437, 102877, 205759, 411527, 823117, 1646237, 3292489, 6584983, 13169977, 26339969, 52679969, 105359939, 210719881, 421439783, 842879579, 1685759167, 3371518343
Offset: 1
-
A055496 := proc(n) option remember; if n=1 then 2 else nextprime(2*A055496(n-1)); fi; end;
-
NextPrim[n_Integer] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; a[1] = 2; a[n_] := NextPrim[ 2*a[n - 1]]; Table[ a[n], {n, 1, 31} ]
a[1]=2;a[n_]:=a[n]=Prime[PrimePi[2*a[n-1]]+1];Table[a[n],{n,40}] (* Zak Seidov, Feb 16 2006 *)
NestList[ NextPrime[2*# ]&,2,100] (* Zak Seidov, Jul 28 2009 *)
-
print1(a=2);for(n=2,20,print1(", ",a=nextprime(a+a))) \\ Charles R Greathouse IV, Jul 19 2011
Original entry on oeis.org
2, 3, 13, 19, 31, 43, 53, 61, 71, 73, 101, 103, 109, 113, 131, 139, 151, 157, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 269, 271, 283, 293, 311, 313, 349, 353, 373, 379, 409, 419, 421, 433, 439, 443, 463, 491, 499, 509, 523, 571, 577, 593, 599, 601
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- V. Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009, 2011.
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
If the first two terms are omitted we get
A164333.
-
primePiMax = 200;
Join[{2, 3}, Select[Table[{(Prime[k-1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, primePiMax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ]&][[All, 2]]*2+1] (* Jean-François Alcover, Aug 18 2018 *)
A229607
Square array read by antidiagonals downwards in which each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 2*p.
Original entry on oeis.org
2, 3, 11, 5, 19, 17, 7, 37, 31, 29, 13, 73, 61, 53, 41, 23, 139, 113, 103, 79, 47, 43, 277, 223, 199, 157, 89, 59, 83, 547, 443, 397, 313, 173, 113, 67, 163, 1093, 883, 787, 619, 337, 223, 131, 71, 317, 2179, 1759, 1571, 1237, 673, 443, 257, 139, 97, 631
Offset: 1
Northwest corner:
2, 3, 5, 7, 13, 23, 43, 83, ...
11, 19, 37, 73, 139, 277, 547, 1093, ...
17, 31, 61, 113, 223, 443, 883, 1759, ...
29, 53, 103, 199, 397, 787, 1571, 3137, ...
41, 79, 157, 313, 619, 1237, 2473, 4943, ...
47, 89, 173, 337, 673, 1327, 2647, 5281, ...
-
seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[2*Last[arr1[1]], -1]], {seqL}]; Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[2*Last[arr1[z]], -1]], {seqL}], {z, 2, 12}]; m = Map[arr1, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
A229609
Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 3*p.
Original entry on oeis.org
2, 5, 3, 13, 7, 11, 37, 19, 31, 17, 109, 53, 89, 47, 23, 317, 157, 263, 139, 67, 29, 947, 467, 787, 409, 199, 83, 41, 2837, 1399, 2357, 1223, 593, 241, 113, 43, 8501, 4177, 7069, 3659, 1777, 719, 337, 127, 59, 25471, 12527, 21193, 10973, 5323, 2153, 1009
Offset: 1
Northwest corner:
2, 5, 13, 37, 109, 317, ...
3, 7, 19, 53, 157, 467, ...
11, 31, 89, 263, 787, 2357, ...
17, 47, 139, 409, 1223, 3659, ...
23, 67, 199, 593, 1777, 5323, ...
29, 83, 241, 719, 2153, 6451, ...
-
seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[3*Last[arr1[1]], -1]], {seqL}]; Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[3*Last[arr1[z]], -1]], {seqL}], {z, 2, 22}]; m = Map[arr1, Range[22]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
A229610
Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p.
Original entry on oeis.org
2, 7, 3, 23, 11, 5, 71, 37, 17, 13, 223, 113, 53, 41, 19, 673, 347, 163, 127, 59, 29, 2027, 1049, 491, 383, 179, 89, 31, 6089, 3163, 1481, 1151, 541, 269, 97, 43, 18269, 9491, 4447, 3457, 1627, 809, 293, 131, 47, 54829, 28477, 13367, 10391, 4889, 2437, 881
Offset: 1
Northwest corner:
2, 7, 23, 71, 223, 673, ...
3, 11, 37, 113, 347, 1049, ...
5, 17, 53, 163, 491, 1481, ...
13, 41, 127, 383, 1151, 3457, ...
19, 59, 179, 541, 1627, 4889, ...
29, 89, 269, 809, 2437, 7331, ...
-
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
Showing 1-5 of 5 results.
Comments