A229607
Square array read by antidiagonals downwards in which each row starts with the least prime not in a previous row, and each prime p in a row is followed by the greatest prime < 2*p.
Original entry on oeis.org
2, 3, 11, 5, 19, 17, 7, 37, 31, 29, 13, 73, 61, 53, 41, 23, 139, 113, 103, 79, 47, 43, 277, 223, 199, 157, 89, 59, 83, 547, 443, 397, 313, 173, 113, 67, 163, 1093, 883, 787, 619, 337, 223, 131, 71, 317, 2179, 1759, 1571, 1237, 673, 443, 257, 139, 97, 631
Offset: 1
Northwest corner:
2, 3, 5, 7, 13, 23, 43, 83, ...
11, 19, 37, 73, 139, 277, 547, 1093, ...
17, 31, 61, 113, 223, 443, 883, 1759, ...
29, 53, 103, 199, 397, 787, 1571, 3137, ...
41, 79, 157, 313, 619, 1237, 2473, 4943, ...
47, 89, 173, 337, 673, 1327, 2647, 5281, ...
-
seqL = 14; arr1[1] = {2}; Do[AppendTo[arr1[1], NextPrime[2*Last[arr1[1]], -1]], {seqL}]; Do[tmp = Union[Flatten[Map[arr1, Range[z]]]]; arr1[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr1[z], NextPrime[2*Last[arr1[z]], -1]], {seqL}], {z, 2, 12}]; m = Map[arr1, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
A229608
Square array read by antidiagonals downwards: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 2*p.
Original entry on oeis.org
2, 5, 3, 11, 7, 13, 23, 17, 29, 19, 47, 37, 59, 41, 31, 97, 79, 127, 83, 67, 43, 197, 163, 257, 167, 137, 89, 53, 397, 331, 521, 337, 277, 179, 107, 61, 797, 673, 1049, 677, 557, 359, 223, 127, 71, 1597, 1361, 2099, 1361, 1117, 719, 449, 257, 149, 73, 3203
Offset: 1
Northwest corner:
2 5 11 23 47 97 197
3 7 17 37 79 163 331
13 29 59 127 257 521 1049
19 41 83 167 337 677 1361
31 67 137 277 557 1117 2237
43 89 179 359 719 1439 2879
53 107 223 449 907 1823 3659
-
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[2*Last[arr2[1]]]], {seqL}];
Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[2*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted and example extended by
Peter Munn, Jul 30 2017
A229610
Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p.
Original entry on oeis.org
2, 7, 3, 23, 11, 5, 71, 37, 17, 13, 223, 113, 53, 41, 19, 673, 347, 163, 127, 59, 29, 2027, 1049, 491, 383, 179, 89, 31, 6089, 3163, 1481, 1151, 541, 269, 97, 43, 18269, 9491, 4447, 3457, 1627, 809, 293, 131, 47, 54829, 28477, 13367, 10391, 4889, 2437, 881
Offset: 1
Northwest corner:
2, 7, 23, 71, 223, 673, ...
3, 11, 37, 113, 347, 1049, ...
5, 17, 53, 163, 491, 1481, ...
13, 41, 127, 383, 1151, 3457, ...
19, 59, 179, 541, 1627, 4889, ...
29, 89, 269, 809, 2437, 7331, ...
-
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
Showing 1-3 of 3 results.
Comments