cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229620 Incorrect version of A045949.

Original entry on oeis.org

0, 6, 38, 116, 256, 478, 798, 1236, 1808, 2534, 3430, 4516, 5808, 7326, 9086, 11108, 13408, 16006, 18918, 22164, 25760, 29726, 34078, 38836, 44016, 49638, 55718, 62276, 69328, 76894, 84990, 93636, 102848, 112646, 123046, 134068, 145728, 158046, 171038, 184724, 199120, 214246, 230118, 246756, 264176, 282398, 301438, 321316, 342048, 363654
Offset: 0

Views

Author

Max Alekseyev, Sep 26 2013

Keywords

Comments

Arises from the formula in Problem 11 of Zhuravlev and Samovol (2012) paper, which incorrectly claims it to produce sequence A045949. Terms a(n) for n<=3 match those of A045949 but afterwards the two sequences diverge. Nevertheless these sequences satisfy the same linear recurrent relation.

Crossrefs

Cf. A045949.

Programs

  • PARI
    { a(n) = if(n%2, (n+1)*(6*n^2+3*n+1)/2- 4*n, n*(6*n^2+9*n-4)/2 ) }

Formula

For even n, a(n) = n*(6*n^2+9*n-4)/2; for odd n, a(n) = (n+1)*(6*n^2+3*n+1)/2 - 4*n.
For n>=4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-2) + 3*a(n-3) - a(n-4).
a(n) = (1-(-1)^n-8*n+18*n^2+12*n^3)/4. G.f.: -2*x*(2*x+1)*(x^2-4*x-3) / ((x-1)^4*(x+1)). - Colin Barker, Sep 29 2013
E.g.f.: (x*(11 + 27*x + 6*x^2)*cosh(x) + (1 + 11*x + 27*x^2 + 6*x^3)*sinh(x))/2. - Stefano Spezia, Mar 20 2022