A229724 Triangular array read by rows: T(n,k) is the number of partitions of n in which the greatest odd part is equal to 2k-1; n >= 1, 1 <= k <= ceiling(n/2).
1, 1, 2, 1, 2, 1, 4, 2, 1, 4, 3, 1, 7, 5, 2, 1, 7, 6, 3, 1, 12, 10, 5, 2, 1, 12, 12, 7, 3, 1, 19, 18, 11, 5, 2, 1, 19, 22, 14, 7, 3, 1, 30, 31, 21, 11, 5, 2, 1, 30, 37, 27, 15, 7, 3, 1, 45, 52, 38, 22, 11, 5, 2, 1, 45, 61, 48, 29, 15, 7, 3, 1, 67, 82, 66, 41
Offset: 1
Examples
1; 1; 2, 1; 2, 1; 4, 2, 1; 4, 3, 1; 7, 5, 2, 1; 7, 6, 3, 1; 12, 10, 5, 2, 1; 12, 12, 7, 3, 1; 19, 18, 11, 5, 2, 1; 19, 22, 14, 7, 3, 1; 30, 31, 21, 11, 5, 2, 1; T(7,2) = 5 because we have: 4+3 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1.
Links
- Alois P. Heinz, Rows n = 1..200, flattened
Crossrefs
Column k=1 gives: A025065(n-1) for n>1.
Programs
-
Maple
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i=1, 1+x, b(n, i-1) +`if`(i>n, 0, (p->`if`(irem(i, 2, 'r')=0, p, coeff(p, x, 0)*(1+x^(r+1)) +add(coeff(p, x, j)*x^j, j=r+2..degree(p))))(b(n-i, i))))) end: T:= n->(p-> seq(coeff(p, x, j), j=1..degree(p)))(b(n, n)): seq(T(n), n=1..20); # Alois P. Heinz, Sep 28 2013
-
Mathematica
nn=16;Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{x,0,nn}],x],{k,1,nn/2}]],1]]//Grid
Comments