cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048003 Triangular array T read by rows: T(h,k) = number of binary words of length h and maximal runlength k.

Original entry on oeis.org

2, 2, 2, 2, 4, 2, 2, 8, 4, 2, 2, 14, 10, 4, 2, 2, 24, 22, 10, 4, 2, 2, 40, 46, 24, 10, 4, 2, 2, 66, 94, 54, 24, 10, 4, 2, 2, 108, 188, 118, 56, 24, 10, 4, 2, 2, 176, 370, 254, 126, 56, 24, 10, 4, 2, 2, 286, 720, 538, 278, 128, 56, 24, 10, 4, 2, 2, 464, 1388, 1126, 606, 286, 128, 56, 24, 10, 4, 2
Offset: 1

Views

Author

Keywords

Examples

			Rows: {2}; {2,2}; {2,4,2}; {2,8,4,2}; ...
T(3,2) = 4, because there are 4 binary words of length 3 and maximal runlength 2: 001, 011, 100, 110. - _Alois P. Heinz_, Oct 29 2008
		

Crossrefs

T(h,2) = 2*a(h+1) for h=2, 3, ..., where a=A000071.
T(h,3) = 2*b(h) for h=3, 4, ..., where b=A000100.
T(h,4) = 2*c(h) for h=4, 5, ..., where c=A000102.
Cf. A048004.
Columns 5, 6 give: 2*A006979, 2*A006980. Row sums give: A000079.
Cf. A229756.

Programs

  • Maple
    gf:= proc(n) 2*x^n/ (1-add(x^i, i=1..n-1))/ (1-add(x^j, j=1..n)) end:
    T:= (h,k)-> coeff(series(gf(k), x, h+1), x, h):
    seq(seq(T(h,k), k=1..h), h=1..13);  # Alois P. Heinz, Oct 29 2008
  • Mathematica
    gf[n_] := 2*x^n*(x^2-2*x+1) / (x^(2*n+1)-2*x^(n+2)-x^(n+1)+x^n+4*x^2-4*x+1); t[h_, k_] := Coefficient[ Series[ gf[k], {x, 0, h+1}], x, h]; Table[ Table[ t[h, k], {k, 1, h}], {h, 1, 13}] // Flatten (* Jean-François Alcover, Oct 07 2013, after Alois P. Heinz *)

Formula

G.f. of column k: 2*x^k / ((1-Sum_{i=1..k-1} x^i) * (1-Sum_{j=1..k} x^j)). - Alois P. Heinz, Oct 29 2008
T(n, k) = 0 if k < 1 or k > n, 2 if k = 1 or k = n, 2T(n-1, k) + T(n-1, k-1) - 2T(n-2, k-1) + T(n-k, k-1) - T(n-k-1, k) otherwise (cf. similar formula for A048004). This is a simplification of the L-shaped sum T(n-1, k) + ... + T(n-k, k) + ... + T(n-k,1). - Andrew Woods, Oct 11 2013
For n > 2k, T(n, n-k) = 2*A045623(k). - Andrew Woods, Oct 11 2013

Extensions

More terms from Alois P. Heinz, Oct 29 2008

A227924 Triangle T(n,k): the number of binary sequences of n zeros and n ones in which the shortest run is of length k.

Original entry on oeis.org

2, 4, 2, 18, 0, 2, 64, 4, 0, 2, 238, 12, 0, 0, 2, 890, 28, 4, 0, 0, 2, 3348, 70, 12, 0, 0, 0, 2, 12662, 182, 20, 4, 0, 0, 0, 2, 48102, 466, 38, 12, 0, 0, 0, 0, 2, 183460, 1186, 84, 20, 4, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Andrew Woods, Oct 09 2013

Keywords

Comments

Row n sums to C(2*n,n) (A000984).

Examples

			The triangle begins:
  2,
  4,   2,
  18,  0,  2,
  64,  4,  0, 2,
  238, 12, 0, 0, 2,
  ...
The second row counts the sets {0101, 1010, 0110, 1001} and {0011, 1100}.
		

Crossrefs

Cf. A229756.

Programs

  • PARI
    bn(n,k)=binomial(max(0,n),k)
    f(n,k)=2*sum(x=1,floor(n/k),bn(n+x*(1-k)-1,x-1)*(bn(n+x*(1-k)-1,x-1)+bn(n+(x+1)*(1-k)-1,x)))
    T(n,k)=f(n,k)-f(n,k+1)
    r(n)=vector(n,x,T(n,x))
Showing 1-2 of 2 results.