cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A229763 a(n) = (2*n) XOR n AND n, where AND and XOR are bitwise logical operators.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 2, 1, 8, 9, 10, 9, 4, 5, 2, 1, 16, 17, 18, 17, 20, 21, 18, 17, 8, 9, 10, 9, 4, 5, 2, 1, 32, 33, 34, 33, 36, 37, 34, 33, 40, 41, 42, 41, 36, 37, 34, 33, 16, 17, 18, 17, 20, 21, 18, 17, 8, 9, 10, 9, 4, 5, 2, 1, 64, 65, 66, 65, 68, 69, 66, 65, 72, 73, 74
Offset: 0

Views

Author

Alex Ratushnyak, Sep 28 2013

Keywords

Comments

a(n) is the least significant 1-bit of each run of consecutive 1's in n, and everywhere else 0's. Or equivalently, clear to 0 each 1-bit which has another 1 immediately below. - Kevin Ryde, Feb 27 2021

Examples

			From _Kevin Ryde_, Feb 27 2021: (Start)
     n = 1831 = binary 11100100111
  a(n) =  289 = binary   100100001   low 1-bit each run
(End)
		

Crossrefs

Cf. A003188 (n XOR floor(n/2)).
Cf. A048724 (n XOR (n*2)).
Cf. A048735 (n AND floor(n/2)).
Cf. A213370 (n AND (n*2)).
Cf. A213064 (n XOR (n*2) AND (n*2)).
Cf. A229762 (n XOR floor(n/2) AND floor(n/2), 1-bit below each run).
Cf. A292272 (high 1-bit each run).

Programs

  • Haskell
    import Data.Bits ((.&.), xor, shiftL)
    a229763 n = (shiftL n 1 `xor` n) .&. n :: Int
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Mathematica
    Array[BitAnd[BitXor[2 #, #], #] &, 75, 0] (* Michael De Vlieger, Nov 03 2022 *)
  • PARI
    a(n) = bitnegimply(n,n<<1); \\ Kevin Ryde, Feb 27 2021
  • Python
    for n in range(333): print (2*n ^ n) & n,
    
  • Python
    def A229763(n): return n&~(n<<1) # Chai Wah Wu, Jun 29 2022
    

Formula

a(n) = ((2*n) XOR n) AND n = ((2*n) AND n) XOR n.
a(2n) = 2a(n), a(2n+1) = A229762(n). - Ralf Stephan, Oct 07 2013
a(n) = n AND NOT 2n. - Chai Wah Wu, Jun 29 2022
G.f.: x/(1 - x^2) + Sum_{k>=1}(2^k*x^(2^k)/((1 - x)*(1 + x^(2^k))*(1 + x^(2^(k - 1))))). - Miles Wilson, Jan 24 2025
Showing 1-1 of 1 results.