A229762 a(n) = (n XOR floor(n/2)) AND floor(n/2), where AND and XOR are bitwise logical operators.
0, 0, 1, 0, 2, 2, 1, 0, 4, 4, 5, 4, 2, 2, 1, 0, 8, 8, 9, 8, 10, 10, 9, 8, 4, 4, 5, 4, 2, 2, 1, 0, 16, 16, 17, 16, 18, 18, 17, 16, 20, 20, 21, 20, 18, 18, 17, 16, 8, 8, 9, 8, 10, 10, 9, 8, 4, 4, 5, 4, 2, 2, 1, 0, 32, 32, 33, 32, 34, 34, 33, 32, 36, 36, 37, 36, 34, 34, 33
Offset: 0
Examples
From _Kevin Ryde_, Feb 27 2021: (Start) n = 7267 = binary 1110001100011 a(n) = 528 = binary 01000010000 1-bit below each run (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
Crossrefs
Programs
-
Haskell
import Data.Bits ((.&.), xor, shiftR) a229762 n = (n `xor` shiftR n 1) .&. shiftR n 1 :: Int -- Reinhard Zumkeller, Oct 10 2013
-
PARI
a(n) = bitnegimply(n>>1,n); \\ Kevin Ryde, Feb 27 2021
-
Python
for n in range(333): print (n ^ (n>>1)) & (n>>1),
-
Python
def A229762(n): return ~n& n>>1 # Chai Wah Wu, Jun 29 2022
Formula
a(n) = (n XOR floor(n/2)) AND floor(n/2) = (n AND floor(n/2)) XOR floor(n/2).
a(n) = floor(n/2) AND NOT n. - Chai Wah Wu, Jun 29 2022
Comments