cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A227216 Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 4, 2, 1, 3, 6, 4, 0, -1, 4, 6, 4, 2, 2, 2, 3, 4, 2, 0, 1, 6, 8, 2, 0, 3, 6, 0, -2, 0, 6, 6, 4, 4, 2, 4, 3, 4, 0, -2, 0, 6, 8, 2, 2, -1, 6, 4, 2, 1, 4, 6, 4, 2, 0, 6, 0, 0, 0, 0, 4, 6, 8, 2, 1, 2, 12, 4, -2, -2, 2, 6, 0, 2, 2, 2, 0, 8, 4, 0, 3, 3, 8, 2
Offset: 0

Views

Author

Michael Somos, Sep 21 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) refers to Case D corresponding to the Apery numbers (A005258).

Examples

			G.f. = 1 + 3*q + 4*q^2 + 2*q^3 + q^4 + 3*q^5 + 6*q^6 + 4*q^7 - q^9 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 1), 20); A[1] + 3*A[2]; /* Michael Somos, Jun 10 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ Re[(3 - I) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^5] QPochhammer[ q^4, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, real( (3 - I) * [ 0, 1, I, -I, -1][ d%5 + 1])))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -3, 2, 2, -3][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • Sage
    A = ModularForms( Gamma1(5), 1, prec=20) . basis(); A[0] + 3*A[1]; # Michael Somos, Jun 10 2014
    

Formula

Expansion of f(-q)^2 * (f(-q^5) / f(-q, -q^4))^5 = f(-q^2, -q^3)^2 * (f(-q^5) / f(-q, -q^4))^3 in powers of q where f() is a Ramanujan theta function.
Euler transform of period 5 sequence [ 3, -2, -2, 3, -2, ...].
Moebius transform is period 5 sequence [ 3, 1, -1, -3, 0, ...]. - Michael Somos, Jun 10 2014
G.f. = g(t(q)) where g(), t() are the g.f. for A005258 and A078905.
G.f.: (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 1)) * (1 - x^(5*k - 4)))^5.

A053723 Number of 5-core partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 2, 6, 5, 7, 5, 12, 6, 12, 6, 10, 11, 16, 7, 20, 15, 12, 12, 22, 10, 25, 12, 20, 18, 30, 10, 32, 21, 24, 16, 30, 21, 36, 20, 24, 25, 42, 12, 42, 36, 35, 22, 46, 22, 43, 25, 32, 36, 52, 20, 60, 30, 40, 30, 60, 30, 62, 32, 42, 43, 60, 24, 66, 48, 44, 30, 72, 35, 72
Offset: 0

Views

Author

James Sellers, Feb 11 2000

Keywords

Comments

Number 11 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 5*x^7 + 7*x^8 + ...
G.f. = q + q^2 + 2*q^3 + 3*q^4 + 5*q^5 + 2*q^6 + 6*q^7 + 5*q^8 + 7*q^9 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988; see p. 54 (1.52).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Total[KroneckerSymbol[#, 5]*n/# & /@ Divisors[n]]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Jul 26 2011, after PARI prog. *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^5]^5 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jul 13 2012 *)
    a[ n_] := With[{m = n + 1}, If[ m < 1, 0, DivisorSum[ m, m/# KroneckerSymbol[ 5, #] &]]]; (* Michael Somos, Jul 13 2012 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^5 / eta(x + A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, n++; sumdiv( n, d, kronecker( d, 5) * n/d))};
    
  • PARI
    {a(n) = if( n<0, 0, n++; direuler( p=2, n, 1 / ((1 - p*X) * (1 - kronecker( p, 5) * X)))[n])};

Formula

Given g.f. A(x), then B(q) = q * A(q) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 2 * u*v*w + 4 * u*w^2 - u^2*w. - Michael Somos, May 02 2005
G.f.: (1/x) * (Sum_{k>0} Kronecker(k, 5) * x^k / (1 - x^k)^2). - Michael Somos, Sep 02 2005
G.f.: Product_{k>0} (1 - x^(5*k))^5 / (1 - x^k) = 1/x * (Sum_{k>0} k * x^k * (1 - x^k) * (1 - x^(2*k)) / (1 - x^(5*k))). - Michael Somos, Jun 17 2005
G.f.: (1/x) * Sum_{a, b, c, d, e in Z^5} x^((a^2 + b^2 + c^2 + d^2 + e^2) / 10) where a + b + c + d + e = 0, (a, b, c, d, e) == (0, 1, 2, 3, 4) (mod 5). - [Dyson 1972] Michael Somos, Aug 08 2007
Euler transform of period 5 sequence [ 1, 1, 1, 1, -4, ...].
Expansion of q^(-1) * eta(q^5)^5 / eta(q) in powers of q.
a(n) = b(n + 1) where b() is multiplicative with b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
Convolution inverse of A109063. a(n) = (-1)^n * A138512(n+1).
Convolution of A227216 and A229802. - Michael Somos, Jun 10 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = (1/5)^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109064. - Michael Somos, May 17 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328717. - Amiram Eldar, Nov 23 2023

A239051 Expansion of (f(-q^2, -q^3)^5 - 3 * q * f(-q, -q^4)^5) / f(-q)^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 10, -10, 10, 0, 0, 10, 0, -10, 10, 0, 10, -10, 20, -10, 0, 10, -10, 0, 10, 0, 20, -10, 0, 0, 0, 0, 10, 0, 0, 0, 10, -20, 20, 10, 0, 10, 0, -20, 0, 0, 20, -10, 20, -10, 0, 10, -10, 10, 10, 0, 10, -10, 0, 0, 0, 0, 0, 0, 10, 0, 20, -10, 10, -10, 0, 10, 10
Offset: 0

Views

Author

Michael Somos, Jun 13 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 10*q^2 - 10*q^3 + 10*q^4 + 10*q^7 - 10*q^9 + 10*q^10 + 10*q^12 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(5), 1), 70) [1];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], 10 Sum[ {0, 1, -1, 0, 0}[[ Mod[ d, 5, 1] ]], {d, Divisors @ n}]];
  • PARI
    {a(n) = if( n<1, n==0, 10 * sumdiv(n, d, (d%5==2) - (d%5==3)))};
    
  • Sage
    ModularForms( Gamma1(5), 1, prec=70).0;
    

Formula

Moebius transform is period 5 sequence [ 0, 10, -10, 0, 0, ...].
G.f.: 1 + 10 * ( Sum_{k>=0} x^(5*k + 2) / (1 - x^(5*k + 2)) - x^(5*k + 3) / (1 - x^(5*k + 3)) ).
a(n) = A227216(n) - 3 * A229802(n).
a(5*n) = a(n). a(5*n + 1) = 0.
Showing 1-3 of 3 results.