A229853 a(n) = 384*n + 1.
1, 385, 769, 1153, 1537, 1921, 2305, 2689, 3073, 3457, 3841, 4225, 4609, 4993, 5377, 5761, 6145, 6529, 6913, 7297, 7681, 8065, 8449, 8833, 9217, 9601, 9985, 10369, 10753, 11137, 11521, 11905, 12289, 12673, 13057, 13441, 13825, 14209, 14593, 14977, 15361, 15745
Offset: 0
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 0..1000
- Wikipedia, Fermat number.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[384*n+1 : n in [0..40]];
-
Maple
seq(384*n+1, n=0..40);
-
Mathematica
Table[384*n + 1, {n, 0, 40}]
-
PARI
for(n=0, 40, print1(384*n+1, ", "));
Formula
G.f.: (1 + 383*x)/(1 - x)^2.
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: exp(x)*(1 + 384*x).
a(n) = 2*a(n-1) - a(n-2). (End)
Comments