cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A229865 Number of n X n 0..1 arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 2, 8, 80, 2432, 247552, 88060928, 112371410944, 523858015518720, 9041009511609073664, 583447777113052431515648, 141885584718620229407228821504, 130832005909904417592540055577034752, 459749137931232137234615429529864283095040, 6182706200522446492946534924719926752508110700544
Offset: 0

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Also known as labeled Eulerian digraphs allowing loops. - Brendan McKay, May 12 2019

Examples

			Some solutions for n=4:
  0 0 0 1     0 0 1 0     0 0 0 1     0 0 1 0     0 0 1 1
  0 1 0 0     1 0 0 0     1 0 1 0     0 0 1 1     1 0 0 1
  0 0 0 1     0 1 0 0     0 1 0 1     0 1 1 1     1 1 1 0
  1 0 1 0     0 0 0 1     0 1 1 0     1 1 0 0     0 1 1 1
From _Gus Wiseman_, Jun 22 2019: (Start)
The a(3) = 8 Eulerian digraph edge-sets:
  {}
  {11}
  {22}
  {11,22}
  {12,21}
  {11,12,21}
  {12,21,22}
  {11,12,21,22}
(End)
		

Crossrefs

Column 1 of A229870.
The unlabeled version is A308111.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Tuples[Range[n],2]],Sort[First/@#]==Sort[Last/@#]&]],{n,4}] (* Gus Wiseman, Jun 22 2019 *)

Formula

a(n) = 2^n * A007080(n). - Andrew Howroyd, Sep 11 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, May 14 2019
Terms a(11) and beyond from Andrew Howroyd, Sep 11 2019

A229417 T(n,k) = number of n X n 0..k zero-diagonal arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 10, 1, 4, 45, 152, 1, 5, 136, 4743, 7736, 1, 6, 325, 59008, 3801411, 1375952, 1, 7, 666, 426425, 345706336, 23938685973, 877901648, 1, 8, 1225, 2164680, 11782824375, 28256240134144, 1215663478473627, 2046320373120, 1, 9, 2080
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Comments

Table starts
.........1................1....................1................1............1
.........2................3....................4................5............6
........10...............45..................136..............325..........666
.......152.............4743................59008...........426425......2164680
......7736..........3801411............345706336......11782824375.213067487016
...1375952......23938685973.......28256240134144.7093199984236625
.877901648.1215663478473627.33097994593655140864

Examples

			Some solutions for n=4 k=4
..0..0..2..0....0..1..0..4....0..0..1..3....0..1..1..4....0..1..1..0
..1..0..2..1....2..0..4..0....1..0..2..3....4..0..2..3....0..0..1..2
..1..2..0..4....2..4..0..2....2..3..0..1....1..4..0..1....0..0..0..4
..0..2..3..0....1..1..4..0....1..3..3..0....1..4..3..0....2..2..2..0
		

Crossrefs

Columns 1..3 are A007080, A229415, A229416.
Rows 3..6 are A037270(n+1), A229418, A229419, A229420.
Cf. A229870.

Formula

Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/2)*n^4 + 2*n^3 + (7/2)*n^2 + 3*n + 1
n=4: [polynomial of degree 9]
Row n is an Ehrhart polynomial of degree (n-1)^2 for the polytope of x(i,j), i,j = 1..n for j <> i, with 0 <= x(i,j) <= 1 and Sum_i x(i,j) = Sum_i x(j,i). - Robert Israel, Mar 30 2023
T(n,k) = A229870(n,k) / (k + 1)^n. - Andrew Howroyd, Mar 30 2023

A229871 Number of 4X4 0..n arrays with corresponding row and column sums equal.

Original entry on oeis.org

2432, 384183, 15106048, 266515625, 2805425280, 20610104767, 116211580928, 535021318017, 2098414000000, 7227967108439, 22362655260672, 63219695614153, 165498794685056, 405459218109375, 937601561264128, 2060839403682497
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Row 4 of A229870

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..1..1....0..0..1..1
..0..1..2..3....0..0..4..2....0..1..1..3....0..1..2..1....0..1..0..2
..0..4..0..0....1..4..0..1....1..4..2..0....1..3..4..3....1..2..0..0
..0..1..2..3....0..2..2..3....0..0..4..3....1..0..4..1....1..0..2..0
		

Formula

Empirical: a(n) = (29/140)*n^13 + (377/140)*n^12 + (3449/210)*n^11 + (13057/210)*n^10 + (34249/210)*n^9 + (21941/70)*n^8 + (6826/15)*n^7 + (53206/105)*n^6 + (60773/140)*n^5 + (119003/420)*n^4 + (28807/210)*n^3 + (9791/210)*n^2 + (348/35)*n + 1

A229872 Number of 5X5 0..n arrays with corresponding row and column sums equal.

Original entry on oeis.org

247552, 923742873, 354003288064, 36821326171875, 1656812779036416, 41629349513286507, 681576779395104768, 8038582007461068429, 73160330136500000000, 539739832319262606581, 3347559386080200916992
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Row 5 of A229870

Examples

			Some solutions for n=4
..0..0..0..0..1....0..0..0..0..0....0..0..0..0..1....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..3..0..4....0..0..3..2..3....0..0..1..2..4....0..0..0..1..3
..0..0..1..2..3....0..0..4..3..2....0..0..4..0..1....0..0..2..2..3
..1..0..3..4..2....0..0..1..4..1....1..0..2..3..1....0..0..2..4..3
		

A229866 Number of n X n 0..2 arrays with corresponding row and column sums equal.

Original entry on oeis.org

3, 27, 1215, 384183, 923742873, 17451302074317, 2658656027421822249
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Column 2 of A229870

Examples

			Some solutions for n=4
..0..0..1..2....0..1..2..1....0..0..2..2....0..1..0..0....0..0..1..1
..1..1..1..0....2..2..0..2....2..1..0..0....0..2..0..1....1..2..0..1
..0..2..1..0....2..2..1..0....2..2..0..0....1..0..2..1....1..0..0..2
..2..0..0..2....0..1..2..2....0..0..2..1....0..0..2..1....0..2..2..1
		

A229867 Number of n X n 0..3 arrays with corresponding row and column sums equal.

Original entry on oeis.org

4, 64, 8704, 15106048, 354003288064, 115737559589453824, 542277543422445827915776
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Column 3 of A229870

Examples

			Some solutions for n=4
..0..0..2..2....0..2..0..2....0..0..2..2....0..2..0..0....0..2..2..0
..2..1..0..2....0..0..2..0....0..2..3..2....2..3..3..0....2..1..1..0
..1..2..1..2....3..0..2..1....3..2..1..1....0..0..1..3....2..0..3..2
..1..2..3..2....1..0..2..0....1..3..1..0....0..3..0..0....0..1..1..1
		

A229868 Number of n X n 0..4 arrays with corresponding row and column sums equal.

Original entry on oeis.org

5, 125, 40625, 266515625, 36821326171875, 110831249753697265625
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Column 4 of A229870

Examples

			Some solutions for n=4
..0..0..0..1....0..0..1..1....0..0..1..0....0..0..1..0....0..0..1..0
..0..0..2..1....0..0..2..1....0..0..1..2....0..0..2..0....0..0..4..1
..1..2..4..0....2..2..3..2....1..0..2..4....0..2..2..4....1..4..0..0
..0..1..1..0....0..1..3..0....0..3..3..4....1..0..3..2....0..1..0..0
		

A229869 Number of n X n 0..5 arrays with corresponding row and column sums equal.

Original entry on oeis.org

6, 216, 143856, 2805425280, 1656812779036416, 30688414550520167402496
Offset: 1

Views

Author

R. H. Hardin, Oct 01 2013

Keywords

Comments

Column 5 of A229870

Examples

			Some solutions for n=4
..0..0..3..3....0..3..0..3....0..3..3..0....0..3..3..3....0..0..3..3
..3..0..3..0....3..0..0..0....3..0..0..3....3..0..3..3....3..0..0..3
..1..4..2..5....1..0..2..4....2..1..0..3....2..2..3..2....2..4..3..1
..2..2..4..2....2..0..5..5....1..2..3..0....4..4..0..1....1..2..4..0
		
Showing 1-8 of 8 results.