A229909 Triangular numbers t such that the following are three triangular numbers: x, y, x+y, where x and y are distances from t to the two nearest squares.
1, 2080, 8038045
Offset: 1
Examples
2080 is in the sequence because the following three are triangular numbers: 2080-2025 = 55, 2116-2080 = 36, 55 + 36 = 91. 2025 = 45^2 and 2116 = 46^2 are the nearest to 2080 squares.
Programs
-
Mathematica
ttnQ[n_]:=Module[{s=Sqrt[n],x,y},x=If[IntegerQ[s],n-(s-1)^2,n- Floor[ s]^2];y=If[IntegerQ[s],(s+1)^2-n,Ceiling[s]^2-n];AllTrue[ {Sqrt[ 8x+1],Sqrt[8y+1],Sqrt[8(x+y)+1]},OddQ]]; Join[{1},Select[Accumulate[ Range[10000]],ttnQ]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 30 2015 *)
-
Python
import math def isTriangular(a): a+=a sr = int(math.sqrt(a)) return (a==sr*(sr+1)) for n in range(1, 1000000000): tn = int(n*(n+1)/2) # = x+y = distance between squares if tn&1: k = tn>>1 k*= k # square below t a = int(math.sqrt(k*2)) t = a*(a+1)/2 if t <= k: a+=1 t+=a ktn = k+tn # square above t while t <= ktn: # check if x and y are triangular: if isTriangular(t-k) and isTriangular(ktn-t): print(int(t)) a+=1 t+=a if (n&0xfffff)==0: print('.', end='')
Comments