A229927 Smallest k >= n such that (4^n-1)*2^k - 1 is prime.
1, 2, 3, 4, 8, 6, 7, 13, 11, 16, 103, 12, 16, 52, 26, 16, 26, 34, 38, 28, 23, 22, 26, 24, 50, 41, 30, 28, 32, 46, 31, 34, 202, 34, 35, 40, 47, 113, 46, 50, 44, 54, 58, 46, 51, 48, 130, 59, 64, 101, 60, 62, 94, 74, 88, 98, 71, 234, 67, 93, 83, 101, 308, 64, 92
Offset: 1
Keywords
Examples
(4^1-1)*2^1-1=5 prime so a(1)=1. (4^2-1)*2^2-1=59 prime so a(2)=2.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..2500
Crossrefs
Cf. A098845.
Programs
-
Mathematica
sk[n_]:=Module[{k=n,c=4^n-1},While[!PrimeQ[c*2^k-1],k++];k]; Array[sk,70] (* Harvey P. Dale, Jul 30 2020 *)
Comments