cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229968 Numbers not divisible by 3 or 11.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106
Offset: 1

Views

Author

Gary Detlefs, Oct 04 2013

Keywords

Comments

Numbers coprime to 33.
For n from 1 to 20, a(n) mod 33 - n - floor(8*n/19) - 2*floor(n/7) has a period of 20 consisting of all zeros except for a -1 at index 7.
The first index where this differs from A192817 is n = 68; A192817(68) = 110 whereas a(68) = 112. - Tom Edgar, Feb 05 2015
The asymptotic density of this sequence is 20/33. - Amiram Eldar, Oct 23 2020

Crossrefs

Programs

  • Maple
    for n from 1 to 500 do if n mod 3<>0 and n mod 11 <>0 then print(n) fi od
  • Mathematica
    Select[Range[132], GCD[#, 33] == 1 &] (* Alonso del Arte, Oct 05 2013 *)
    Select[Range[200], Mod[#, 3]>0 && Mod[#, 11]>0 &] (* Vincenzo Librandi, Feb 08 2014 *)

Formula

a(n+20) = a(n) + 33.
a(n) = 33*floor((n-1)/20) + f(n) + floor(8*f(n)/19) + 2*floor(f(n)/7) - floor(f(n+12)/19) + 32*floor(f(n-1)/19), where f(n) = n mod 20.
a(n) = a(n-1)+a(n-20)-a(n-21). G.f.: x*(x^20 +x^19 +2*x^18 +x^17 +2*x^16 +x^15 +2*x^14 +3*x^13 +x^12 +2*x^11 +x^10 +2*x^9 +x^8 +3*x^7 +2*x^6 +x^5 +2*x^4 +x^3 +2*x^2 +x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)*(x^8 -x^6 +x^4 -x^2 +1)). - Colin Barker, Oct 08 2013