A229968 Numbers not divisible by 3 or 11.
1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 46, 47, 49, 50, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 106
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Maple
for n from 1 to 500 do if n mod 3<>0 and n mod 11 <>0 then print(n) fi od
-
Mathematica
Select[Range[132], GCD[#, 33] == 1 &] (* Alonso del Arte, Oct 05 2013 *) Select[Range[200], Mod[#, 3]>0 && Mod[#, 11]>0 &] (* Vincenzo Librandi, Feb 08 2014 *)
Formula
a(n+20) = a(n) + 33.
a(n) = 33*floor((n-1)/20) + f(n) + floor(8*f(n)/19) + 2*floor(f(n)/7) - floor(f(n+12)/19) + 32*floor(f(n-1)/19), where f(n) = n mod 20.
a(n) = a(n-1)+a(n-20)-a(n-21). G.f.: x*(x^20 +x^19 +2*x^18 +x^17 +2*x^16 +x^15 +2*x^14 +3*x^13 +x^12 +2*x^11 +x^10 +2*x^9 +x^8 +3*x^7 +2*x^6 +x^5 +2*x^4 +x^3 +2*x^2 +x +1) / ((x -1)^2*(x +1)*(x^2 +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)*(x^8 -x^6 +x^4 -x^2 +1)). - Colin Barker, Oct 08 2013
Comments