cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229973 Numbers coprime to 39.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 53, 55, 56, 58, 59, 61, 62, 64, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 97, 98, 100, 101, 103, 106
Offset: 1

Views

Author

Gary Detlefs, Oct 04 2013

Keywords

Comments

Numbers not divisible by 3 or 13.
For n from 1 to 24, a(n) mod 39-n - floor(11*n/25)-2*floor(n/8) has a period of 24, consisting of all zeros except a -2 at indices 8, 16, and 24.
The asymptotic density of this sequence is 8/13. - Amiram Eldar, Oct 23 2020

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do if n mod 3<>0 and n mod 13<>0 then print(n) fi od
  • Mathematica
    CoefficientList[Series[(x^22 + x^20 + x^18 + x^16 + 2 x^14 - x^12 + 3 x^11 - x^10 + 2 x^8 + x^6 + x^4 + x^2 + 1)/((x - 1)^2 (x + 1) (x^2 - x + 1) (x^2 + 1) (x^4 - x^2 + 1) (x^4 + 1) (x^8 - x^4 + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Oct 08 2013 *)
    Select[Range[100], CoprimeQ[39, #] &] (* Amiram Eldar, Oct 23 2020 *)

Formula

a(n+24) = a(n) + 39.
a(n) = 39*floor((n-1)/24) + f(n) + floor(11*f(n)/25) + 2*floor(f(n)/8) - 2*floor(((n-1)mod 8)/7) + 40*floor(f(n-1)/23), where f(n) = n mod 24.
G.f.: x*(x^22+x^20+x^18+x^16+2*x^14-x^12+3*x^11-x^10+2*x^8+x^6+x^4+x^2+1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+1)*(x^4-x^2+1)*(x^4+1)*(x^8-x^4+1)). - Colin Barker, Oct 07 2013

Extensions

More terms from Colin Barker, Oct 07 2013
a(34) corrected by Vincenzo Librandi, Oct 08 2013