A229973 Numbers coprime to 39.
1, 2, 4, 5, 7, 8, 10, 11, 14, 16, 17, 19, 20, 22, 23, 25, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 53, 55, 56, 58, 59, 61, 62, 64, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 97, 98, 100, 101, 103, 106
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1,-1,2,-1).
Programs
-
Maple
for n from 1 to 50 do if n mod 3<>0 and n mod 13<>0 then print(n) fi od
-
Mathematica
CoefficientList[Series[(x^22 + x^20 + x^18 + x^16 + 2 x^14 - x^12 + 3 x^11 - x^10 + 2 x^8 + x^6 + x^4 + x^2 + 1)/((x - 1)^2 (x + 1) (x^2 - x + 1) (x^2 + 1) (x^4 - x^2 + 1) (x^4 + 1) (x^8 - x^4 + 1)), {x, 0, 80}], x] (* Vincenzo Librandi, Oct 08 2013 *) Select[Range[100], CoprimeQ[39, #] &] (* Amiram Eldar, Oct 23 2020 *)
Formula
a(n+24) = a(n) + 39.
a(n) = 39*floor((n-1)/24) + f(n) + floor(11*f(n)/25) + 2*floor(f(n)/8) - 2*floor(((n-1)mod 8)/7) + 40*floor(f(n-1)/23), where f(n) = n mod 24.
G.f.: x*(x^22+x^20+x^18+x^16+2*x^14-x^12+3*x^11-x^10+2*x^8+x^6+x^4+x^2+1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+1)*(x^4-x^2+1)*(x^4+1)*(x^8-x^4+1)). - Colin Barker, Oct 07 2013
Extensions
More terms from Colin Barker, Oct 07 2013
a(34) corrected by Vincenzo Librandi, Oct 08 2013
Comments