cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230044 Nonnegative numbers k such that k plus a perfect square is a triangular number.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 24, 27, 28, 29, 30, 32, 35, 36, 39, 41, 42, 44, 45, 46, 50, 51, 53, 54, 55, 56, 57, 62, 65, 66, 69, 71, 72, 74, 75, 77, 78, 80, 82, 84, 87, 89, 90, 91, 95, 96, 100, 101, 104, 105, 107, 109, 110, 111, 116, 117, 119, 120, 122, 126, 127, 128
Offset: 1

Views

Author

Ralf Stephan, Oct 06 2013

Keywords

Comments

Negative k are in A175035.
Numbers such that the Diophantine equation y^2 + y - 2x^2 = 2n, y > 0 has a solution. Empirically, solutions (x,y) don't exceed (5n,5n) for n < 10^5. Record quotients y/n are at n = 2, 3, 12, 45, 1225, 6806, ...
Conjecture: these are the sorted distinct terms of A064784.
n is in this sequence iff 8n+1 is in A035251, that is, every prime p == 3 or 5 (mod 8) dividing 8n+1 appears to an even power. - Max Alekseyev, Oct 14 2013

Examples

			28 is triangular, and 25 is a square <= 28, and 28-25=3, so 3 is in sequence.
		

Crossrefs

Programs

  • PARI
    B=bnfinit(z^2-8); is(n)=#bnfisintnorm(B,8*n+1) \\ Max Alekseyev, Oct 13 2013