cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A064784 Difference between n-th triangular number t(n) and the largest square <= t(n).

Original entry on oeis.org

0, 2, 2, 1, 6, 5, 3, 0, 9, 6, 2, 14, 10, 5, 20, 15, 9, 2, 21, 14, 6, 28, 20, 11, 1, 27, 17, 6, 35, 24, 12, 44, 32, 19, 5, 41, 27, 12, 51, 36, 20, 3, 46, 29, 11, 57, 39, 20, 0, 50, 30, 9, 62, 41, 19, 75, 53, 30, 6, 66, 42, 17, 80, 55, 29, 2, 69, 42, 14, 84, 56, 27, 100, 71, 41, 10, 87, 56
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 20 2001

Keywords

Comments

The second differences of a(n) - (a(n)-a(n-1))-(a(n-1)-a(n-2)) - give 2, -2, -1, 6, -6, -1, -1, 12, -12, -1, 16, -16, -1 ... 82k+2, 82k-2, -1, 82k+6, 82k-6, -1, -1, 82k+12, 82k-12, -1, 82k+16, -82k-16, -1, 82k+20, -82k-20, -1, -1, 82k+26, -82k-26, -1, 82k+30, -82k-30, -1, -1, 82k+36, -82k-36, -1, 82k+40, -82k-40, -1, 82k+44, -82k-44, -1, -1, 82k+50, -82k-50, -1, 82k+54, -82k-54, -1, -1, 82k+60, -82k-60, -1, 82k+64, -82k-64, -1, -1, 82k+70, -82k-70, -1, 82k+74, -82k-74, -1, 82k+78, -82k-78, -1, -1, ...

Examples

			n = 5: A000217(5) = 28, largest square below that is 25, so a(5) = 28 - 25 = 3.
		

Crossrefs

Cf. A001108, A076816, A128549, A230038. Unique values are in A230044.

Programs

  • Maple
    seq(n*(n+1)/2-floor(sqrt(n*(n+1)/2))^2,n=0..100);
  • Mathematica
    f[n_]:=n*(n+1)/2-Floor[Sqrt[n*(n+1)/2]]^2; lst={}; Do[AppendTo[lst,f[n]],{n,0,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 17 2010 *)
    #-Floor[Sqrt[#]]^2&/@Accumulate[Range[100]] (* Harvey P. Dale, Oct 15 2014 *)
  • PARI
    { default(realprecision, 100); for (n=1, 1000, t=n*(n + 1)/2; a=t - floor(sqrt(t))^2; write("b064784.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 25 2009
    
  • Python
    from math import isqrt
    def A064784(n): return (m:=n*(n+1)>>1)-isqrt(m)**2 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = n*(n+1)/2 - floor(sqrt(n*(n+1)/2))^2.
a(n) = A053186(A000217(n)). - R. J. Mathar, Sep 10 2016
a(A001108(n)) = 0. - Hugo Pfoertner, Jun 01 2024

Extensions

Definition corrected by Harry J. Smith, Sep 25 2009
Terms corrected by Harry J. Smith, Sep 25 2009

A276600 Values of m such that m^2 + 6 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 3, 7, 15, 20, 42, 88, 117, 245, 513, 682, 1428, 2990, 3975, 8323, 17427, 23168, 48510, 101572, 135033, 282737, 592005, 787030, 1647912, 3450458, 4587147, 9604735, 20110743, 26735852, 55980498, 117214000, 155827965, 326278253, 683173257, 908231938
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Comments

2*a(n+2) gives the y members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2, n >= 0. The corresponding x members are x(n) = A106525(n). - Wolfdieter Lang, Sep 29 2016

Examples

			7 is in the sequence because 7^2 + 6 = 55, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[0,2,3,7,15,20]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {0,2,3,7,15,20}, 41] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) + O(x^40)))
    
  • Sage
    def A276600_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) ).list()
    a=A276600_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-3) - a(n-6) for n>6.
G.f.: x^2*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6).
From Wolfdieter Lang, Sep 29 2016: (Start)
Trisection:
a(2+3*n) = 15*S(n-1,6) - 2*S(n-2,6) = A275794(n),
a(3+3*n) = 20*S(n-1,6) - 3*S(n-2,6) = A275796(n),
a(4+3*n) = 7*(6*S(n-1,6) - S(n-2,6)) = 7*A001109(n+1) for n >= 0, with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
(End)

A175035 Offsets i such that i + n*(n+1)/2 is a perfect square for some positive integer n.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 13, 15, 16, 19, 21, 22, 24, 25, 26, 28, 30, 33, 34, 35, 36, 39, 43, 45, 46, 48, 49, 53, 54, 55, 58, 60, 61, 63, 64, 66, 71, 72, 75, 76, 78, 79, 80, 81, 85, 89, 90, 91, 93, 94, 97, 99, 100, 103, 105, 106, 108, 111, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Ctibor O. Zizka, Nov 10 2009

Keywords

Comments

The ansatz n*(n+1)/2+i=s^2 can be transformed into (2*n+1)^2-2*(2*s)^2 =1-8*i.
A necessary condition for solutions to this Diophantine equation is that D=2 is a quadratic residue of the squarefree part of 8*i-1 (see A057126).
A sufficient condition is then available by a sequence of tests on the continued fractions of a quadratic surd that originates from a solution of this congruence.
See Mollin and Matthews for details. - R. J. Mathar, Nov 16 2009

Crossrefs

Programs

  • Mathematica
    Take[Rest[Ceiling[Sqrt[#]]^2-#&/@Accumulate[Range[1000]]//Union],70] (* Harvey P. Dale, Sep 07 2019 *)
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2-8),-8*n+1) /* Ralf Stephan, Oct 14 2013 */

Extensions

Extended by R. J. Mathar, Nov 26 2009

A276598 Values of m such that m^2 + 3 is a triangular number (A000217).

Original entry on oeis.org

0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276599 (k=5), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.
Cf. A328791 (the resulting triangular numbers).

Programs

  • Magma
    [n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *)
    (5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    [(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A276599 Values of n such that n^2 + 5 is a triangular number (A000217).

Original entry on oeis.org

1, 4, 10, 25, 59, 146, 344, 851, 2005, 4960, 11686, 28909, 68111, 168494, 396980, 982055, 2313769, 5723836, 13485634, 33360961, 78600035, 194441930, 458114576, 1133290619, 2670087421, 6605301784, 15562409950, 38498520085, 90704372279, 224385818726
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			4 is in the sequence because 4^2 + 5 = 21, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,4,10,25]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1},{1,4,10,25},30] (* Harvey P. Dale, Feb 13 2017 *)
  • PARI
    Vec(x*(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • PARI
    a(n)=([0,1;-1,6]^(n\2)*if(n%2,[1;10],[-1;4]))[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+3*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276601 Values of k such that k^2 + 9 is a triangular number (A000217).

Original entry on oeis.org

1, 6, 12, 37, 71, 216, 414, 1259, 2413, 7338, 14064, 42769, 81971, 249276, 477762, 1452887, 2784601, 8468046, 16229844, 49355389, 94594463, 287664288, 551336934, 1676630339, 3213427141, 9772117746, 18729225912, 56956076137, 109161928331, 331964339076
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			6 is in the sequence because 6^2+9 = 45, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276602 Values of k such that k^2 + 10 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			9 is in the sequence because 9^2+10 = 91, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276601 (k=9), where k is the value added to n^2.

Programs

  • Magma
    [n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    (9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
    
  • Sage
    [(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = (9/(4*sqrt(2))*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n) ).
a(n) = 9*A001109(n-1).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 9*x^2 / (1-6*x+x^2).
a(n) = (9/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A328792 Numbers that are not the difference between any triangular number and the largest square that does not exceed it.

Original entry on oeis.org

4, 7, 8, 13, 16, 18, 22, 23, 25, 26, 31, 33, 34, 37, 38, 40, 43, 47, 48, 49, 52, 58, 59, 60, 61, 63, 64, 67, 68, 70, 73, 76, 79, 81, 83, 85, 86, 88, 92, 93, 94, 97, 98, 99, 102, 103, 106, 108, 112, 113, 114, 115, 118, 121, 123, 124, 125, 130, 133, 134, 138
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Examples

			For any triangular number t, let f(t) = t - floor(sqrt(t))^2.
0 is not a term: for each term t in A001110, f(t) = 0.
1 is not a term: for each term t > 1 in A164055, f(t) = 1.
2 is not a term: for each term t in A214838, f(t) = 2.
3 is not a term: for each term t > 3 in A328791, f(t) = 3.
4 is a term, however: there exists no triangular number t such that f(t) = 4.
		

Crossrefs

The complement of A230044.

A335761 Nonnegative numbers that are the difference between a positive tetrahedral number and a positive cubic number.

Original entry on oeis.org

0, 2, 3, 4, 8, 9, 12, 19, 20, 21, 27, 29, 34, 40, 43, 47, 48, 53, 55, 56, 57, 70, 76, 83, 87, 93, 95, 101, 103, 112, 119, 136, 138, 140, 144, 148, 152, 156, 157, 161, 164, 168, 174, 181, 193, 209, 212, 217, 219, 222, 239, 240, 253, 259, 275, 278, 279, 281, 285
Offset: 1

Views

Author

Ya-Ping Lu, Jun 21 2020

Keywords

Comments

The sequence is the difference between the tetrahedral number (A000292) and the cubic number (A000578) such that terms are of the form A000292(i)-A000578(j), where A000292(i) >= A000578(j) >= 0.
It appears that sequence terms are more scarce than prime numbers. The number of terms in this sequence (n) and the number of prime numbers up to a(n) are shown in the figure attached in the LINKS section. It can be seen that, for a(n) > 304, n is less than pi(a(n)), where pi is the prime counting function.

Examples

			a(1)=0 because t(1)-c(1)=1-1=0;
a(2)=2 because t(3)-c(2)=10-8=2;
a(7)=12 because t(4)-c(2)=20-8=12, and t(39)-c(22)=10660-10648=12;
a(19)=55 because t(6)-c(1)=56-1=55, and t(4669)-c(2570)=16974593055-16974593000=55.
		

Crossrefs

Formula

The difference between the i-th tetrahedral number, t(i), and j-th cubic number, c(j) is d = i*(i+1)*(i+2)/6 - j^3, where i, j >=1 and t(i) >= c(j).
Showing 1-9 of 9 results.