A106525
Values of x in x^2 - 49 = 2*y^2.
Original entry on oeis.org
9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
-
I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
-
Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
-
def A106525_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021
A276598
Values of m such that m^2 + 3 is a triangular number (A000217).
Original entry on oeis.org
0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1
5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Cf.
A328791 (the resulting triangular numbers).
-
[n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *)
(5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
-
concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
-
a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
[(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A275793
The x members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.
Original entry on oeis.org
9, 43, 249, 1451, 8457, 49291, 287289, 1674443, 9759369, 56881771, 331531257, 1932305771, 11262303369, 65641514443, 382586783289, 2229879185291, 12996688328457, 75750250785451, 441504816384249, 2573278647520043, 14998167068736009, 87415723764896011
Offset: 0
The first positive proper fundamental solution (x = x1(n), y = y1(n)) of x^2 - 2*y^2 = 49 are [9, 4], [43, 30], [249, 176], [1451, 1026], [8457, 5980], [49291, 34854], [287289, 203144], [1674443, 1184010], ...
The first positive proper fundamental solution of the second class (x = x2(n), y = y2(n)) are [11, 6], [57, 40], [331, 234], [1929, 1364], [11243, 7950], [65529, 46336], [381931, 270066], [2226057, 1574060], ...
- T. Nagell, Introduction to Number Theory, Wiley, 1951, Theorem 109, pp. 207-208.
-
I:=[9,43]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
RecurrenceTable[{a[n]== 6a[n-1] -a[n-2], a[-1]==11, a[0]==9}, a, {n,0,25}] (* Michael De Vlieger, Sep 28 2016 *)
Table[9*Fibonacci[2*n+1, 2] - Fibonacci[2*n, 2], {n,0,30}] (* G. C. Greubel, Sep 15 2021 *)
-
a(n) = round((((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
-
Vec((9-11*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016
-
def P(n): return lucas_number1(n, 2, -1);
[9*P(2*n+1) - P(2*n) for n in (0..30)] # G. C. Greubel, Sep 15 2021
A276599
Values of n such that n^2 + 5 is a triangular number (A000217).
Original entry on oeis.org
1, 4, 10, 25, 59, 146, 344, 851, 2005, 4960, 11686, 28909, 68111, 168494, 396980, 982055, 2313769, 5723836, 13485634, 33360961, 78600035, 194441930, 458114576, 1133290619, 2670087421, 6605301784, 15562409950, 38498520085, 90704372279, 224385818726
Offset: 1
4 is in the sequence because 4^2 + 5 = 21, which is a triangular number.
-
I:=[1,4,10,25]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{0,6,0,-1},{1,4,10,25},30] (* Harvey P. Dale, Feb 13 2017 *)
-
Vec(x*(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
-
a(n)=([0,1;-1,6]^(n\2)*if(n%2,[1;10],[-1;4]))[1,1] \\ Charles R Greathouse IV, Sep 07 2016
-
def P(n): return lucas_number1(n, 2, -1)
[(1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A276601
Values of k such that k^2 + 9 is a triangular number (A000217).
Original entry on oeis.org
1, 6, 12, 37, 71, 216, 414, 1259, 2413, 7338, 14064, 42769, 81971, 249276, 477762, 1452887, 2784601, 8468046, 16229844, 49355389, 94594463, 287664288, 551336934, 1676630339, 3213427141, 9772117746, 18729225912, 56956076137, 109161928331, 331964339076
Offset: 1
6 is in the sequence because 6^2+9 = 45, which is a triangular number.
-
I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* G. C. Greubel, Sep 15 2021 *)
-
Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
-
def P(n): return lucas_number1(n, 2, -1)
[(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A276602
Values of k such that k^2 + 10 is a triangular number (A000217).
Original entry on oeis.org
0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
Offset: 1
9 is in the sequence because 9^2+10 = 91, which is a triangular number.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Soumeya M. Tebtoub, Hacène Belbachir and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
-
[n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
(9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
-
concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
-
[(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021
A106526
Values of y in x^2 - 49 = 2*y^2.
Original entry on oeis.org
4, 6, 14, 30, 40, 84, 176, 234, 490, 1026, 1364, 2856, 5980, 7950, 16646, 34854, 46336, 97020, 203144, 270066, 565474, 1184010, 1574060, 3295824, 6900916, 9174294, 19209470, 40221486, 53471704, 111960996, 234428000, 311655930, 652556506
Offset: 1
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
a(12) = 2856; as 12 mod 3 = 0, a(12) = 14*A001109(12/3) = 204*14 = 2856; also 2*2856^2 = 4039^2 - 49, i.e., A106525(12)^2 - 49;
a(13) = 5980; as 13 mod 3 = 1, a(13) = A001109(4+2) - A001109(4+1) + A001109(4) + A001109(4-1) = 6930 - 1189 + 204 + 35 = 5980; also 2*5980^2 = 8457^2 - 49, i.e., A106525(13)^2 - 49;
a(14) = 7950; as 14 mod 3 = 2, a(14) = A001109(4+2) + A001109(4+1) - A001109(4) + A001109(4-1) = 6930 + 1189 - 204 + 35 = 7950; also 2*7950^2 = 11243^2 - 49, i.e., A106525(14)^2 - 49.
-
I:=[4,6,14,30,40,84]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 12 2021
-
LinearRecurrence[{0,0,6,0,0,-1}, {4,6,14,30,40,84}, 40] (* T. D. Noe, Nov 04 2013 *)
-
def A106526_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (2*x)*(2 +3*x +7*x^2 +3*x^3 +2*x^4)/(1 -6*x^3 +x^6) ).list()
a=A106526_list(41); a[1:] # G. C. Greubel, Aug 12 2021
Showing 1-7 of 7 results.
Comments