cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A106525 Values of x in x^2 - 49 = 2*y^2.

Original entry on oeis.org

9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005

Keywords

Comments

From Wolfdieter Lang, Sep 27 2016: (Start)
These are the x members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2.
The y(n) members are given in 2*A276600(n+2).
This sequence is composed of the two y members of the two proper classes of solutions of the Pell equation x^2 - 2*y^2 = 7^2 and of 7 times the proper solutions X of the Pell equation X^2 - 2*Y^2 = +1. See A275793, A275795 and 7*A001541. See A275793 for further information, and the Nagell reference. (End)
The sums of the consecutive integers in the following sequences will be squares: for n, i >= 1, if mod(i,3)=0 then 7*n+1, 7*n+2, ..., a(i)*n + (A001541(i/3)-1)/2; otherwise, if mod(i,3)=1 or 2 then 7*n+4, 7*n+5, ..., a(i)*n + (a(i)-1)/2.

Examples

			In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
		

Crossrefs

Programs

  • Magma
    I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
  • PARI
    Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
    
  • Sage
    def A106525_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
    a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(3*k) = A001541(k)*7 for k >= 2.
a(3*k+1) = (A001541(k+2) + A001541(k-1) + A001541(k) - A001541(k+1))/2;
a(3*k+2) = (A001541(k+2) + A001541(k-1) - A001541(k) + A001541(k+1))/2.
a(3*n) = A275793(n), a(3*n+1) = A275795(n), a(3*n+2) = 7*A001541(n+1), n >= 0. - Wolfdieter Lang, Sep 27 2016
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(9 + 11*x + 21*x^2 - 11*x^3 - 9*x^4 - 7*x^5)/(1 - 6*x^3 + x^6). (End)

Extensions

Entry revised by N. J. A. Sloane, Oct 26 2018 at the suggestion of Georg Fischer.

A276598 Values of m such that m^2 + 3 is a triangular number (A000217).

Original entry on oeis.org

0, 5, 30, 175, 1020, 5945, 34650, 201955, 1177080, 6860525, 39986070, 233055895, 1358349300, 7917039905, 46143890130, 268946300875, 1567533915120, 9136257189845, 53250009223950, 310363798153855, 1808932779699180, 10543232880041225, 61450464500548170
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			5 is in the sequence because 5^2 + 3 = 28, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276599 (k=5), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.
Cf. A328791 (the resulting triangular numbers).

Programs

  • Magma
    [n le 2 select 5*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[5*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{6,-1},{0,5},30] (* Harvey P. Dale, Apr 26 2019 *)
    (5/2)*Fibonacci[2*Range[30] -2, 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(5*x^2/(1-6*x+x^2) + O(x^30)))
    
  • PARI
    a(n)=([0,1;-1,6]^n*[-5;0])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    [(5/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 5*A001109(n-1).
a(n) = 5*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n )/(4*sqrt(2)).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 5*x^2 / (1-6*x+x^2).
a(n) = (5/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A275793 The x members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.

Original entry on oeis.org

9, 43, 249, 1451, 8457, 49291, 287289, 1674443, 9759369, 56881771, 331531257, 1932305771, 11262303369, 65641514443, 382586783289, 2229879185291, 12996688328457, 75750250785451, 441504816384249, 2573278647520043, 14998167068736009, 87415723764896011
Offset: 0

Views

Author

Wolfdieter Lang, Sep 27 2016

Keywords

Comments

This gives the (increasingly sorted) positive x members of the first class of the proper solutions (x1(n), y1(n)) to the Pell equation x^2 - 2*y^2 = +7^2. For the y1(n) solutions see 2*A275794(n). The solutions for the second class (x2(n), y2(n)) are found in A275795(n) and 2*A275796(n).
All solutions, including the improper ones, are given in A106525(n) and 2*A276600(n+2).
See also the comments on A263012 which apply here mutatis mutandis.
This is for the Pell equations x^2 - 2*y^2 = z^2, besides z^2 = 1 the first instance with proper solutions. For z^2 > 1 there seem to be always two classes of such solutions. For z^2 = 1 there is only one class of proper solutions. These z^2 values seem to appear for z from A058529 (prime factors are +1 or -1 (mod 8)).

Examples

			The first positive proper fundamental solution (x = x1(n), y = y1(n)) of x^2 - 2*y^2  = 49 are [9, 4], [43, 30], [249, 176], [1451, 1026], [8457, 5980], [49291, 34854], [287289, 203144], [1674443, 1184010], ...
The first positive proper fundamental solution of the second class (x = x2(n), y = y2(n)) are [11, 6], [57, 40], [331, 234], [1929, 1364], [11243, 7950], [65529, 46336], [381931, 270066], [2226057, 1574060], ...
		

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, Theorem 109, pp. 207-208.

Crossrefs

Programs

  • Magma
    I:=[9,43]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    RecurrenceTable[{a[n]== 6a[n-1] -a[n-2], a[-1]==11, a[0]==9}, a, {n,0,25}] (* Michael De Vlieger, Sep 28 2016 *)
    Table[9*Fibonacci[2*n+1, 2] - Fibonacci[2*n, 2], {n,0,30}] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    a(n) = round((((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((9-11*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1);
    [9*P(2*n+1) - P(2*n) for n in (0..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 43*S(n-1, 6) - 9*S(n-2, 6), with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
O.g.f: (9 - 11*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2) for n >= 1, with a(-1) = 11 and a(0) = 9.
a(n) = (((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2)). - Colin Barker, Sep 28 2016
a(n) = 9*A000129(2*n+1) - A000129(2*n). - G. C. Greubel, Sep 15 2021

A276599 Values of n such that n^2 + 5 is a triangular number (A000217).

Original entry on oeis.org

1, 4, 10, 25, 59, 146, 344, 851, 2005, 4960, 11686, 28909, 68111, 168494, 396980, 982055, 2313769, 5723836, 13485634, 33360961, 78600035, 194441930, 458114576, 1133290619, 2670087421, 6605301784, 15562409950, 38498520085, 90704372279, 224385818726
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			4 is in the sequence because 4^2 + 5 = 21, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276600 (k=6), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,4,10,25]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1},{1,4,10,25},30] (* Harvey P. Dale, Feb 13 2017 *)
  • PARI
    Vec(x*(1+x)*(1+3*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • PARI
    a(n)=([0,1;-1,6]^(n\2)*if(n%2,[1;10],[-1;4]))[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+3*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(P(n+2) + P(n+1) + (-1)^n*(3*P(n) - 7*P(n-1))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276601 Values of k such that k^2 + 9 is a triangular number (A000217).

Original entry on oeis.org

1, 6, 12, 37, 71, 216, 414, 1259, 2413, 7338, 14064, 42769, 81971, 249276, 477762, 1452887, 2784601, 8468046, 16229844, 49355389, 94594463, 287664288, 551336934, 1676630339, 3213427141, 9772117746, 18729225912, 56956076137, 109161928331, 331964339076
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			6 is in the sequence because 6^2+9 = 45, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1)
    [(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-2) - a(n-4) for n>4.
G.f.: x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).
a(n) = (1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))), where P(n) = A000129(n). - G. C. Greubel, Sep 15 2021

A276602 Values of k such that k^2 + 10 is a triangular number (A000217).

Original entry on oeis.org

0, 9, 54, 315, 1836, 10701, 62370, 363519, 2118744, 12348945, 71974926, 419500611, 2445028740, 14250671829, 83059002234, 484103341575, 2821561047216, 16445262941721, 95850016603110, 558654836676939, 3256079003458524, 18977819184074205, 110610836100986706
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Examples

			9 is in the sequence because 9^2+10 = 91, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276601 (k=9), where k is the value added to n^2.

Programs

  • Magma
    [n le 2 select 9*(n-1) else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    CoefficientList[Series[9*x/(1 - 6*x + x^2), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 07 2016 *)
    (9/2)*Fibonacci[2*(Range[30] -1), 2] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(9*x^2/(1-6*x+x^2) + O(x^30)))
    
  • Sage
    [(9/2)*lucas_number1(2*n-2, 2, -1) for n in (1..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = (9/(4*sqrt(2))*( (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n - (3 + 2*sqrt(2))*(3 - 2*sqrt(2))^n) ).
a(n) = 9*A001109(n-1).
a(n) = 6*a(n-1) - a(n-2) for n>2.
G.f.: 9*x^2 / (1-6*x+x^2).
a(n) = (9/2)*A000129(2*n-2). - G. C. Greubel, Sep 15 2021

A106526 Values of y in x^2 - 49 = 2*y^2.

Original entry on oeis.org

4, 6, 14, 30, 40, 84, 176, 234, 490, 1026, 1364, 2856, 5980, 7950, 16646, 34854, 46336, 97020, 203144, 270066, 565474, 1184010, 1574060, 3295824, 6900916, 9174294, 19209470, 40221486, 53471704, 111960996, 234428000, 311655930, 652556506
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005

Keywords

Comments

The expression 2*n^2 + c with c = 49 yields more squares than any other value of c in the range 1 < c < 100 and n < 5*10^4. - K. D. Bajpai, Nov 04 2013

Examples

			a(12) = 2856; as 12 mod 3 = 0, a(12) = 14*A001109(12/3) = 204*14 = 2856; also 2*2856^2 = 4039^2 - 49, i.e., A106525(12)^2 - 49;
a(13) = 5980; as 13 mod 3 = 1, a(13) = A001109(4+2) - A001109(4+1) + A001109(4) + A001109(4-1) = 6930 - 1189 + 204 + 35 = 5980; also 2*5980^2 = 8457^2 - 49, i.e., A106525(13)^2 - 49;
a(14) = 7950; as 14 mod 3 = 2, a(14) = A001109(4+2) + A001109(4+1) - A001109(4) + A001109(4-1) = 6930 + 1189 - 204 + 35 = 7950; also 2*7950^2 = 11243^2 - 49, i.e., A106525(14)^2 - 49.
		

Crossrefs

Programs

  • Magma
    I:=[4,6,14,30,40,84]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 12 2021
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {4,6,14,30,40,84}, 40] (* T. D. Noe, Nov 04 2013 *)
  • Sage
    def A106526_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (2*x)*(2 +3*x +7*x^2 +3*x^3 +2*x^4)/(1 -6*x^3 +x^6) ).list()
    a=A106526_list(41); a[1:] # G. C. Greubel, Aug 12 2021

Formula

a(n) = 6*a(n-3) - a(n-6), with initial terms 4, 6, 14, 30, 40, 84. - T. D. Noe, Nov 04 2013
From G. C. Greubel, Aug 12 2021: (Start)
a(n) = 2*A276600(n+1).
G.f.: (2*x)*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6). (End)
Showing 1-7 of 7 results.