cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276600 Values of m such that m^2 + 6 is a triangular number (A000217).

Original entry on oeis.org

0, 2, 3, 7, 15, 20, 42, 88, 117, 245, 513, 682, 1428, 2990, 3975, 8323, 17427, 23168, 48510, 101572, 135033, 282737, 592005, 787030, 1647912, 3450458, 4587147, 9604735, 20110743, 26735852, 55980498, 117214000, 155827965, 326278253, 683173257, 908231938
Offset: 1

Views

Author

Colin Barker, Sep 07 2016

Keywords

Comments

2*a(n+2) gives the y members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2, n >= 0. The corresponding x members are x(n) = A106525(n). - Wolfdieter Lang, Sep 29 2016

Examples

			7 is in the sequence because 7^2 + 6 = 55, which is a triangular number.
		

Crossrefs

Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276601 (k=9), A276602 (k=10), where k is the value added to n^2.

Programs

  • Magma
    I:=[0,2,3,7,15,20]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {0,2,3,7,15,20}, 41] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    concat(0, Vec(x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) + O(x^40)))
    
  • Sage
    def A276600_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) ).list()
    a=A276600_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 6*a(n-3) - a(n-6) for n>6.
G.f.: x^2*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6).
From Wolfdieter Lang, Sep 29 2016: (Start)
Trisection:
a(2+3*n) = 15*S(n-1,6) - 2*S(n-2,6) = A275794(n),
a(3+3*n) = 20*S(n-1,6) - 3*S(n-2,6) = A275796(n),
a(4+3*n) = 7*(6*S(n-1,6) - S(n-2,6)) = 7*A001109(n+1) for n >= 0, with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
(End)

A275793 The x members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.

Original entry on oeis.org

9, 43, 249, 1451, 8457, 49291, 287289, 1674443, 9759369, 56881771, 331531257, 1932305771, 11262303369, 65641514443, 382586783289, 2229879185291, 12996688328457, 75750250785451, 441504816384249, 2573278647520043, 14998167068736009, 87415723764896011
Offset: 0

Views

Author

Wolfdieter Lang, Sep 27 2016

Keywords

Comments

This gives the (increasingly sorted) positive x members of the first class of the proper solutions (x1(n), y1(n)) to the Pell equation x^2 - 2*y^2 = +7^2. For the y1(n) solutions see 2*A275794(n). The solutions for the second class (x2(n), y2(n)) are found in A275795(n) and 2*A275796(n).
All solutions, including the improper ones, are given in A106525(n) and 2*A276600(n+2).
See also the comments on A263012 which apply here mutatis mutandis.
This is for the Pell equations x^2 - 2*y^2 = z^2, besides z^2 = 1 the first instance with proper solutions. For z^2 > 1 there seem to be always two classes of such solutions. For z^2 = 1 there is only one class of proper solutions. These z^2 values seem to appear for z from A058529 (prime factors are +1 or -1 (mod 8)).

Examples

			The first positive proper fundamental solution (x = x1(n), y = y1(n)) of x^2 - 2*y^2  = 49 are [9, 4], [43, 30], [249, 176], [1451, 1026], [8457, 5980], [49291, 34854], [287289, 203144], [1674443, 1184010], ...
The first positive proper fundamental solution of the second class (x = x2(n), y = y2(n)) are [11, 6], [57, 40], [331, 234], [1929, 1364], [11243, 7950], [65529, 46336], [381931, 270066], [2226057, 1574060], ...
		

References

  • T. Nagell, Introduction to Number Theory, Wiley, 1951, Theorem 109, pp. 207-208.

Crossrefs

Programs

  • Magma
    I:=[9,43]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
    
  • Mathematica
    RecurrenceTable[{a[n]== 6a[n-1] -a[n-2], a[-1]==11, a[0]==9}, a, {n,0,25}] (* Michael De Vlieger, Sep 28 2016 *)
    Table[9*Fibonacci[2*n+1, 2] - Fibonacci[2*n, 2], {n,0,30}] (* G. C. Greubel, Sep 15 2021 *)
  • PARI
    a(n) = round((((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((9-11*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016
    
  • Sage
    def P(n): return lucas_number1(n, 2, -1);
    [9*P(2*n+1) - P(2*n) for n in (0..30)] # G. C. Greubel, Sep 15 2021

Formula

a(n) = 43*S(n-1, 6) - 9*S(n-2, 6), with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
O.g.f: (9 - 11*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2) for n >= 1, with a(-1) = 11 and a(0) = 9.
a(n) = (((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2)). - Colin Barker, Sep 28 2016
a(n) = 9*A000129(2*n+1) - A000129(2*n). - G. C. Greubel, Sep 15 2021

A106526 Values of y in x^2 - 49 = 2*y^2.

Original entry on oeis.org

4, 6, 14, 30, 40, 84, 176, 234, 490, 1026, 1364, 2856, 5980, 7950, 16646, 34854, 46336, 97020, 203144, 270066, 565474, 1184010, 1574060, 3295824, 6900916, 9174294, 19209470, 40221486, 53471704, 111960996, 234428000, 311655930, 652556506
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005

Keywords

Comments

The expression 2*n^2 + c with c = 49 yields more squares than any other value of c in the range 1 < c < 100 and n < 5*10^4. - K. D. Bajpai, Nov 04 2013

Examples

			a(12) = 2856; as 12 mod 3 = 0, a(12) = 14*A001109(12/3) = 204*14 = 2856; also 2*2856^2 = 4039^2 - 49, i.e., A106525(12)^2 - 49;
a(13) = 5980; as 13 mod 3 = 1, a(13) = A001109(4+2) - A001109(4+1) + A001109(4) + A001109(4-1) = 6930 - 1189 + 204 + 35 = 5980; also 2*5980^2 = 8457^2 - 49, i.e., A106525(13)^2 - 49;
a(14) = 7950; as 14 mod 3 = 2, a(14) = A001109(4+2) + A001109(4+1) - A001109(4) + A001109(4-1) = 6930 + 1189 - 204 + 35 = 7950; also 2*7950^2 = 11243^2 - 49, i.e., A106525(14)^2 - 49.
		

Crossrefs

Programs

  • Magma
    I:=[4,6,14,30,40,84]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 12 2021
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {4,6,14,30,40,84}, 40] (* T. D. Noe, Nov 04 2013 *)
  • Sage
    def A106526_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (2*x)*(2 +3*x +7*x^2 +3*x^3 +2*x^4)/(1 -6*x^3 +x^6) ).list()
    a=A106526_list(41); a[1:] # G. C. Greubel, Aug 12 2021

Formula

a(n) = 6*a(n-3) - a(n-6), with initial terms 4, 6, 14, 30, 40, 84. - T. D. Noe, Nov 04 2013
From G. C. Greubel, Aug 12 2021: (Start)
a(n) = 2*A276600(n+1).
G.f.: (2*x)*(2 + 3*x + 7*x^2 + 3*x^3 + 2*x^4)/(1 - 6*x^3 + x^6). (End)

A333641 11-gonal (or hendecagonal) square numbers.

Original entry on oeis.org

0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
Offset: 1

Views

Author

Bernard Schott, Mar 31 2020

Keywords

Comments

The 11-gonal square numbers correspond to the nonnegative integer solutions of the Diophantine equation k*(9*k-7)/2 = m^2, equivalent to (18*k-7)^2 - 72*m^2 = 49. Substituting x = 18*k-7 and y = m gives the Pell equation x^2-72*y^2 = 49. The integer solutions (x,y) = (-7,0), (11,1), (119,14), (1451,171), (11243,1325), ... correspond to the following solutions (k,m) = (0,0), (1,1), (7,14), (81,171), (625,1325), ...

Examples

			1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
		

Crossrefs

Intersection of A000290 (squares) and A051682 (11-gonals).
Cf. A106525.
Cf. A001110 (square triangulars), A036353 (square pentagonals), A046177 (square hexagonals), A036354 (square heptagonals), A036428 (square octagonals), A036411 (square 9-gonals), A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals), A342709 (square 12-gonals).

Programs

  • Maple
    for k from 0 to 8000000 do
    d:= k*(9*k-7)/2;
    if issqr(d) then print(k,sqrt(d),d); else fi; od:
  • Mathematica
    Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
  • PARI
    concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020

Formula

a(n) = k*(9*k-7)/2 for n > 1, where k = (A106525(4*n-6) + 7)/18. - Jinyuan Wang, Mar 31 2020

Extensions

More terms from Amiram Eldar, Mar 31 2020

A359438 For n >= 0, let S be the sequence of numbers m such that (m^2 - 2*n^2 + 1)/2 is a square. Then a(n) is the number k such that S(j) = 6*S(j-k) - S(j-2k) for all j for which S(j-2k) is defined.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 3, 4, 4, 4, 4, 2, 4, 2, 8, 2, 2, 4, 2, 2, 2, 6, 2, 2, 4, 4, 2, 2, 4, 2, 4, 8, 4, 2, 4, 6, 2, 4, 4, 2, 2, 2, 8, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 2, 2, 8, 4, 4, 2, 4
Offset: 0

Views

Author

Jon E. Schoenfield, Dec 31 2022

Keywords

Examples

			For n = 0, {S(j)} = A002315 (the NSW numbers), which satisfies S(j) = 6*S(j-1) - S(j-2), so a(0) = 1.
For n = 1, {S(j)} = A001541, which also satisfies S(j) = 6*S(j-1) - S(j-2), so a(1) = 1.
For n = 2, {S(j)} = A077443, which satisfies S(j) = 6*S(j-2) - S(j-4), so a(2) = 2.
For n = 5, {S(j)} = A106525, which satisfies S(j) = 6*S(j-3) - S(j-6), so a(5) = 3.
		

Crossrefs

Formula

a(0) = 1; for n >= 1, a(n) = A000005(2*n^2 - 1).
Showing 1-5 of 5 results.