cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106525 Values of x in x^2 - 49 = 2*y^2.

Original entry on oeis.org

9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1

Views

Author

Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005

Keywords

Comments

From Wolfdieter Lang, Sep 27 2016: (Start)
These are the x members of all positive solutions (x(n), y(n)), proper and improper, of the Pell equation x^2 - 2*y^2 = 7^2.
The y(n) members are given in 2*A276600(n+2).
This sequence is composed of the two y members of the two proper classes of solutions of the Pell equation x^2 - 2*y^2 = 7^2 and of 7 times the proper solutions X of the Pell equation X^2 - 2*Y^2 = +1. See A275793, A275795 and 7*A001541. See A275793 for further information, and the Nagell reference. (End)
The sums of the consecutive integers in the following sequences will be squares: for n, i >= 1, if mod(i,3)=0 then 7*n+1, 7*n+2, ..., a(i)*n + (A001541(i/3)-1)/2; otherwise, if mod(i,3)=1 or 2 then 7*n+4, 7*n+5, ..., a(i)*n + (a(i)-1)/2.

Examples

			In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
		

Crossrefs

Programs

  • Magma
    I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
    
  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
  • PARI
    Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
    
  • Sage
    def A106525_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
    a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021

Formula

a(3*k) = A001541(k)*7 for k >= 2.
a(3*k+1) = (A001541(k+2) + A001541(k-1) + A001541(k) - A001541(k+1))/2;
a(3*k+2) = (A001541(k+2) + A001541(k-1) - A001541(k) + A001541(k+1))/2.
a(3*n) = A275793(n), a(3*n+1) = A275795(n), a(3*n+2) = 7*A001541(n+1), n >= 0. - Wolfdieter Lang, Sep 27 2016
From Colin Barker, Mar 29 2012: (Start)
a(n) = 6*a(n-3) - a(n-6).
G.f.: x*(9 + 11*x + 21*x^2 - 11*x^3 - 9*x^4 - 7*x^5)/(1 - 6*x^3 + x^6). (End)

Extensions

Entry revised by N. J. A. Sloane, Oct 26 2018 at the suggestion of Georg Fischer.

A275794 One half of the y members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.

Original entry on oeis.org

2, 15, 88, 513, 2990, 17427, 101572, 592005, 3450458, 20110743, 117214000, 683173257, 3981825542, 23207779995, 135264854428, 788381346573, 4595023225010, 26781758003487, 156095524795912, 909791390771985, 5302652819835998, 30906125528244003
Offset: 0

Views

Author

Wolfdieter Lang, Sep 27 2016

Keywords

Comments

See A275793(n) for the x1(n) members and details as well as a reference.

Examples

			See A275793.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2 + 3*x)/(1 - 6*x + x^2), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 29 2017 *)
    LinearRecurrence[{6,-1},{2,15},30] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    a(n) = round((((3-2*sqrt(2))^n*(-9+4*sqrt(2))+(3+2*sqrt(2))^n*(9+4*sqrt(2))))/(4*sqrt(2))) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((2+3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016

Formula

a(n) = 15*S(n-1,6) - 2*S(n-2,6), with the Chebyshev polynomials S(n, 6) = A001109(n+1) for n >= -1, with S(-2, 6) = -1.
O.g.f: (2 + 3*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2) for n >= 1, with a(-1) = -3 and a(0) = 2.
a(n) = (((3-2*sqrt(2))^n*(-9+4*sqrt(2))+(3+2*sqrt(2))^n*(9+4*sqrt(2)))) / (4*sqrt(2)). - Colin Barker, Sep 28 2016

A275795 The x members of the positive proper solutions (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - 2*y^2 = +7^2.

Original entry on oeis.org

11, 57, 331, 1929, 11243, 65529, 381931, 2226057, 12974411, 75620409, 440748043, 2568867849, 14972459051, 87265886457, 508622859691, 2964471271689, 17278204770443, 100704757350969, 586950339335371, 3420997278661257, 19939033332632171, 116213202717131769
Offset: 0

Views

Author

Wolfdieter Lang, Sep 27 2016

Keywords

Comments

For details and the Nagell reference see A275793.
The y2(n) members are given in A275795(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{11,57},30] (* Harvey P. Dale, Sep 01 2022 *)
  • PARI
    a(n) = round((((3-2*sqrt(2))^n*(-12+11*sqrt(2))+(3+2*sqrt(2))^n*(12+11*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((11-9*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 09 2016

Formula

a(n) = 57*S(n-1,6) - 11*S(n-2,6) with the Chebyshev polynomials S(n, 6) = A001109(n+1), n >= -1, with S(-2, 6) = -1.
O.g.f.: (11 - 9*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2), n >= 1, with a(-1) = 9 and a(0) = 11.
a(n) = (((3-2*sqrt(2))^n*(-12+11*sqrt(2))+(3+2*sqrt(2))^n*(12+11*sqrt(2)))) / (2*sqrt(2)). - Colin Barker, Sep 28 2016

A275796 One half of the y members of the positive proper solutions (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - 2*y^2 = +7^2.

Original entry on oeis.org

3, 20, 117, 682, 3975, 23168, 135033, 787030, 4587147, 26735852, 155827965, 908231938, 5293563663, 30853150040, 179825336577, 1048098869422, 6108767879955, 35604508410308, 207518282581893, 1209505187081050, 7049512839904407
Offset: 0

Views

Author

Wolfdieter Lang, Sep 27 2016

Keywords

Comments

For the x2(n) members see A275795(n).
For details and the Nagell reference see A275793.

Crossrefs

Programs

  • PARI
    a(n) = round((((3-2*sqrt(2))^n*(-11+6*sqrt(2))+(3+2*sqrt(2))^n*(11+6*sqrt(2))))/(4*sqrt(2))) \\ Colin Barker, Sep 28 2016
    
  • PARI
    Vec((3 + 2*x)/(1 - 6*x + x^2) + O(x^20)) \\ Felix Fröhlich, Sep 28 2016

Formula

a(n) = 20*S(n-1,6) - 3*S(n-2,6), with the Chebyshev polynomials S(n, 6) = A001109(n+1) for n >= -1, with S(-2, 6) = -1.
O.g.f: (3 + 2*x)/(1 - 6*x + x^2).
a(n) = 6*a(n-1) - a(n-2) for n >= 1, with a(-1) = -2 and a(0) = 3.
a(n) = (((3-2*sqrt(2))^n*(-11+6*sqrt(2))+(3+2*sqrt(2))^n*(11+6*sqrt(2)))) / (4*sqrt(2)). - Colin Barker, Sep 28 2016
Showing 1-4 of 4 results.