A276600
Values of m such that m^2 + 6 is a triangular number (A000217).
Original entry on oeis.org
0, 2, 3, 7, 15, 20, 42, 88, 117, 245, 513, 682, 1428, 2990, 3975, 8323, 17427, 23168, 48510, 101572, 135033, 282737, 592005, 787030, 1647912, 3450458, 4587147, 9604735, 20110743, 26735852, 55980498, 117214000, 155827965, 326278253, 683173257, 908231938
Offset: 1
7 is in the sequence because 7^2 + 6 = 55, which is a triangular number.
-
I:=[0,2,3,7,15,20]; [n le 6 select I[n] else 6*Self(n-3) - Self(n-6): n in [1..41]]; // G. C. Greubel, Sep 15 2021
-
LinearRecurrence[{0,0,6,0,0,-1}, {0,2,3,7,15,20}, 41] (* G. C. Greubel, Sep 15 2021 *)
-
concat(0, Vec(x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) + O(x^40)))
-
def A276600_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x^2*(2+3*x+7*x^2+3*x^3+2*x^4)/(1-6*x^3+x^6) ).list()
a=A276600_list(41); a[1:] # G. C. Greubel, Sep 15 2021
A106525
Values of x in x^2 - 49 = 2*y^2.
Original entry on oeis.org
9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
-
I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
-
Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
-
def A106525_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021
A275793
The x members of the positive proper solutions (x = x1(n), y = y1(n)) of the first class for the Pell equation x^2 - 2*y^2 = +7^2.
Original entry on oeis.org
9, 43, 249, 1451, 8457, 49291, 287289, 1674443, 9759369, 56881771, 331531257, 1932305771, 11262303369, 65641514443, 382586783289, 2229879185291, 12996688328457, 75750250785451, 441504816384249, 2573278647520043, 14998167068736009, 87415723764896011
Offset: 0
The first positive proper fundamental solution (x = x1(n), y = y1(n)) of x^2 - 2*y^2 = 49 are [9, 4], [43, 30], [249, 176], [1451, 1026], [8457, 5980], [49291, 34854], [287289, 203144], [1674443, 1184010], ...
The first positive proper fundamental solution of the second class (x = x2(n), y = y2(n)) are [11, 6], [57, 40], [331, 234], [1929, 1364], [11243, 7950], [65529, 46336], [381931, 270066], [2226057, 1574060], ...
- T. Nagell, Introduction to Number Theory, Wiley, 1951, Theorem 109, pp. 207-208.
-
I:=[9,43]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 15 2021
-
RecurrenceTable[{a[n]== 6a[n-1] -a[n-2], a[-1]==11, a[0]==9}, a, {n,0,25}] (* Michael De Vlieger, Sep 28 2016 *)
Table[9*Fibonacci[2*n+1, 2] - Fibonacci[2*n, 2], {n,0,30}] (* G. C. Greubel, Sep 15 2021 *)
-
a(n) = round((((3-2*sqrt(2))^n*(-8+9*sqrt(2))+(3+2*sqrt(2))^n*(8+9*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
-
Vec((9-11*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 02 2016
-
def P(n): return lucas_number1(n, 2, -1);
[9*P(2*n+1) - P(2*n) for n in (0..30)] # G. C. Greubel, Sep 15 2021
A275795
The x members of the positive proper solutions (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - 2*y^2 = +7^2.
Original entry on oeis.org
11, 57, 331, 1929, 11243, 65529, 381931, 2226057, 12974411, 75620409, 440748043, 2568867849, 14972459051, 87265886457, 508622859691, 2964471271689, 17278204770443, 100704757350969, 586950339335371, 3420997278661257, 19939033332632171, 116213202717131769
Offset: 0
-
LinearRecurrence[{6,-1},{11,57},30] (* Harvey P. Dale, Sep 01 2022 *)
-
a(n) = round((((3-2*sqrt(2))^n*(-12+11*sqrt(2))+(3+2*sqrt(2))^n*(12+11*sqrt(2)))) / (2*sqrt(2))) \\ Colin Barker, Sep 28 2016
-
Vec((11-9*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Oct 09 2016
A275796
One half of the y members of the positive proper solutions (x = x2(n), y = y2(n)) of the second class for the Pell equation x^2 - 2*y^2 = +7^2.
Original entry on oeis.org
3, 20, 117, 682, 3975, 23168, 135033, 787030, 4587147, 26735852, 155827965, 908231938, 5293563663, 30853150040, 179825336577, 1048098869422, 6108767879955, 35604508410308, 207518282581893, 1209505187081050, 7049512839904407
Offset: 0
-
a(n) = round((((3-2*sqrt(2))^n*(-11+6*sqrt(2))+(3+2*sqrt(2))^n*(11+6*sqrt(2))))/(4*sqrt(2))) \\ Colin Barker, Sep 28 2016
-
Vec((3 + 2*x)/(1 - 6*x + x^2) + O(x^20)) \\ Felix Fröhlich, Sep 28 2016
Showing 1-5 of 5 results.
Comments