cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230071 Sum over all permutations without double ascents on n elements and each permutation contributes 2 raised to the power of the number of double descents.

Original entry on oeis.org

0, 0, 2, 6, 26, 130, 782, 5474, 43794, 394146, 3941462, 43356082, 520272986, 6763548818, 94689683454, 1420345251810, 22725524028962, 386333908492354, 6954010352862374, 132126196704385106, 2642523934087702122, 55493002615841744562, 1220846057548518380366
Offset: 0

Views

Author

Richard Ehrenborg, Oct 08 2013

Keywords

Examples

			For n=3 the a(3)= 6 since the 4 permutations 132, 213, 231, 312 all contribute 1 and 321 contributes 2 to the sum. Note when n=4, the permutation 4321 contributes 4 since it has two double descents.
G.f. = 2*x^2 + 6*x^3 + 26*x^4 + 130*x^5 + 782*x^6 + 5474*x^7 + 43794*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) if n < 2 then 0 elif n = 2 then 2 else (2-n)*a(n-3)+a(n-2)+n*a(n-1) fi end: seq(a(n), n=0..9); # Peter Luschny, May 30 2014
  • Mathematica
    a[0] = 0; a[n_] := a[n] = n a[n-1] + (-1)^n + 1;
    Array[a, 23, 0] (* Jean-François Alcover, Jul 08 2019, after A080227 *)

Formula

E.g.f.: (exp(x)+exp(-x)-2)/(1-x).
a(n) = closest integer to (e-2+1/e)*n! for n > 3.
a(n) = (2-n)*a(n-3) + a(n-2) + n*a(n-1) for n > 2.
a(n) = 2*A080227(n).
a(n) = sum(0<=kA002627(k)). - Peter Luschny, May 30 2014
0 = a(n)*(+a(n+1) - a(n+2) - 3*a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) + a(n+2) - 2*a(n+3)) + a(n+2)*(+a(n+2) + a(n+3) - a(n+4)) + a(n+3)*(+a(n+3)) if n>=0. - Michael Somos, May 30 2014

Extensions

a(0) and a(1) prepended, partially edited. - Peter Luschny, May 30 2014