A230073 Coefficients of the minimal polynomials of the algebraic numbers sqLhat(2*l) from A230072, l >= 1, related to the square of all length in a regular (2*l)-gon inscribed in a circle of radius 1 length unit.
-1, 1, 1, -6, 1, 1, -14, 1, 1, -28, 70, -28, 1, 1, -44, 166, -44, 1, 1, -60, 134, -60, 1, 1, -90, 911, -2092, 911, -90, 1, 1, -120, 1820, -8008, 12870, -8008, 1820, -120, 1, 1, -138, 975, -1868, 975, -138, 1, 1, -184, 3740, -16136, 25414, -16136, 3740, -184, 1, 1, -230, 7085, -67528, 252242, -394404, 252242, -67528, 7085, -230, 1, 1, -248, 3612, -16072, 25670, -16072, 3612, -248, 1
Offset: 1
Examples
The table a(l,m) (n = 2*l) starts: (row length A055034(2*l)) l, n\m 0 1 2 3 4 5 6 7 8 1, 2: -1 1 2, 4: 1 -6 1 3, 6: 1 -14 1 4, 8: 1 -28 70 -28 1 5, 10: 1 -44 166 -44 1 6, 12: 1 -60 134 -60 1 7, 14: 1 -90 911 -2092 911 -90 1 8, 16: 1 -120 1820 -8008 12870 -8008 1820 -120 1 9, 18: 1 -138 975 -1868 975 -138 1 10, 20: 1 -184 3740 -16136 25414 -16136 3740 -184 1 ... 11, 22: 1 -230 7085 -67528 252242 -394404 252242 -67528 7085 -230 1 12, 24: 1 -248 3612 -16072 25670 -16072 3612 -248 1 13, 26: 1 -324 14626 -215604 1346671 -3965064 5692636 -3965064 1346671 -215604 14626 -324 1 14, 28: 1 -372 18242 -266916 1488367 -3925992 5377436 -3925992 1488367 -266916 18242 -372 1 15, 30: 1 -376 4380 -15944 24134 -15944 4380 -376 1 l = 3, n=6: (hexagon) psqLhat(3, x) = 1 - 14*x + x^2. The two roots are positive: 7 + 4*sqrt(3) = sqLhat(3) and 7 - 4*sqrt(3). For the square of the sum of all length ratios one has PsqL(3, x) = 1296 - 504*x + x^2, with the previous two roots scaled by a factor 36. l = 5, n=10: (decagon) = psqLhat(5, x) = 1 - 44*x + 166*x^2 - 44*x^3 + x^4 with the four positive roots sqLhat(10) = 7 + 8*phi + 4*sqrt(7+11*phi), 15 - 8*phi + 4*sqrt(18 - 11*phi), 15 - 8*phi - 4*sqrt(18 - 11*phi), 7 + 8*phi - 4*sqrt(7 + 11*phi), approximately 39.86345819, 3.851840015, 0.259616169, 0.02508563, respectively, where phi = rho(5) = (1+sqrt(5))/2 (the golden section). PsqL(5, x) =100000000 - 44000000*x + 1660000*x^2 - 4400*x^3 + x^4, with the previous four roots scaled by a factor 100. l=6, n = 12: (dodecagon) psqLhat(6, x) = 1 - 60*x + 134*x^2 - 60*x^3 + x^4, with the four positive roots sqLhat(12) = 15 + 6*sqrt(6) + 80*sqrt(3*(49-20*sqrt(6))) + 98*sqrt(2*(49-20*sqrt(6))), 15 + 6*sqrt(6) - 80*sqrt(3*(49-20*sqrt(6))) - 98*sqrt(2*(49-20*sqrt(6))), 15 - 6*sqrt(6) + 2*sqrt(2*(49-20*sqrt(6))), 15 - 6*sqrt(6) - 2*sqrt(2*(49-20*sqrt(6))), approximately 57.69548054, 1.69839638, 0.58879070, 0.01733238, respectively. Mustonen's conjecture for rows no. l = 2^k, k >= 1 (see a comment above): l = 8 (k=3): ((-1)^m)*binomial(16,2*m), m = 0..8: [1, -120, 1820, -8008, 12870, -8008, 1820, -120, 1], with obvious symmetry.
Links
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
- Seppo Mustonen, Lengths of edges and diagonals and sums of them in regular polygons as roots of algebraic equations.
Formula
a(l,m) = [x^m](psqLhat(l, x)), l >= 1, m = 0, ..., delta(2*l), with delta(2*l) = A055034(2*l), and the formula for psqLhat(2*l, x) is given in a comment above.
Mustonen's conjecture (adapted, see a comment above) is: a(2^k,m) = ((-1)^m)*binomial(2*2^k,2*m), k >= 1, and for k=0 a(1,0) = -1 and a(1,1) = 1 is trivial.
Comments