A230077 Table a(n,m) giving in row n all k from {1, 2, ..., prime(n)-1} for which the Legendre symbol (k/prime(n)) = +1, for odd prime(n).
1, 1, 4, 1, 4, 2, 1, 4, 9, 5, 3, 1, 4, 9, 3, 12, 10, 1, 4, 9, 16, 8, 2, 15, 13, 1, 4, 9, 16, 6, 17, 11, 7, 5, 1, 4, 9, 16, 2, 13, 3, 18, 12, 8, 6, 1, 4, 9, 16, 25, 7, 20, 6, 23, 13, 5, 28, 24, 22, 1, 4, 9, 16, 25, 5, 18, 2, 19, 7, 28, 20, 14, 10, 8
Offset: 2
Examples
The irregular table a(n,m) begins (here p(n)=prime(n)): n, p(n)\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2, 3: 1 3, 5: 1 4 4, 7: 1 4 2 5, 11: 1 4 9 5 3 6, 13: 1 4 9 3 12 10 7, 17: 1 4 9 16 8 2 15 13 8, 19: 1 4 9 16 6 17 11 7 5 9, 23: 1 4 9 16 2 13 3 18 12 8 6 10, 29: 1 4 9 16 25 7 20 6 23 13 5 28 24 22 11, 31 1 4 9 16 25 5 18 2 19 7 28 20 14 10 8 ... Row n=12, p(n)=37: 1, 4, 9, 16, 25, 36, 12, 27, 7, 26, 10, 33, 21, 11, 3, 34, 30, 28. Row n=13, p(n)=41: 1, 4, 9, 16, 25, 36, 8, 23, 40, 18, 39, 21, 5, 32, 20, 10, 2, 37, 33, 31. (2/p) = +1 for n=4, p(4) = 7; p(7) = 17, p(9) = 23, p(11) = 31, p(13) = 41, ... This leads to A001132 (primes 1 or 7 (mod 8)). 4 = 5 - 1 appears in row n=3 for p(3)=5 because 5 is from A002144. 10 cannot appear in row 5 for p(5)=11 because 11 == 3 (mod 4), hence 11 is not in A002144.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, 2003.
Links
- Alois P. Heinz, Rows n = 2..100, flattened
Programs
-
Maple
T:= n-> (p-> seq(irem(m^2, p), m=1..(p-1)/2))(ithprime(n)): seq(T(n), n=2..12); # Alois P. Heinz, May 07 2015
-
Mathematica
Table[Table[Mod[a^2, p], {a, 1, (p - 1)/2}], {p, Prime[Range[2, 20]]}] // Grid (* Geoffrey Critzer, Apr 30 2015 *)
Formula
a(n,m) = m^2 (mod prime(n)), n >= 2, where prime(n) = A000040(n), m = 1, 2, ..., (prime(n) - 1)/2.
Comments