cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230094 Numbers that can be expressed as (m + sum of digits of m) in exactly two ways.

Original entry on oeis.org

101, 103, 105, 107, 109, 111, 113, 115, 117, 202, 204, 206, 208, 210, 212, 214, 216, 218, 303, 305, 307, 309, 311, 313, 315, 317, 319, 404, 406, 408, 410, 412, 414, 416, 418, 420, 505, 507, 509, 511, 513, 515, 517, 519, 521, 606, 608, 610, 612, 614, 616, 618, 620, 622, 707, 709, 711, 713, 715, 717, 719, 721, 723, 808
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2013, Oct 24 2013

Keywords

Comments

Numbers n such that A230093(n) = 2.
The sequence "Numbers n such that A230093(n) = 3" starts at 10^13+1 (see A230092). This implies that changing the definition of A230094 to "Numbers n such that A230093(n) >= 2" (the so-called "junction numbers") would produce a sequence which agrees with A230094 up to 10^13.
Makowski shows that the sequence of junction numbers is infinite.

Examples

			a(1) = 101 = 91 + (9+1) = 100 + (1+0+0);
a(10) = 202 = 191 + (1+9+1) = 200 + (2+0+0);
a(100) = 1106 = 1093 + (1+0+9+3) = 1102 + (1+1+0+2);
a(1000) = 10312 = 10295 + (1+0+2+9+5) = 10304 + (1+0+3+0+4).
		

References

  • Joshi, V. S. A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student 39 (1971), 327--328 (1972). MR0330032 (48 #8371)
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Makowski, Andrzej. On Kaprekar's "junction numbers''. Math. Student 34 1966 77 (1967). MR0223292 (36 #6340)
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)

Crossrefs

Programs

  • Haskell
    a230094 n = a230094_list !! (n-1)
    a230094_list = filter ((== 2) . a230093) [0..]
    -- Reinhard Zumkeller, Oct 11 2013
  • Maple
    For Maple code see A230093.
  • Mathematica
    Position[#, 2][[All, 1]] - 1 &@ Sort[Join[#2, Map[{#, 0} &, Complement[Range[#1], #2[[All, 1]]]] ] ][[All, -1]] & @@ {#, Tally@ Array[# + Total@ IntegerDigits@ # &, # + 1, 0]} &[10^3] (* Michael De Vlieger, Oct 28 2020, after Harvey P. Dale at A230093 *)