cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245596 Number of tilings of an n X 1 rectangle by tiles of dimension 1 X 1 and 2 X 1 such that every tile is next to a tile of different size.

Original entry on oeis.org

1, 0, 0, 2, 1, 1, 4, 3, 4, 8, 9, 12, 19, 24, 33, 48, 64, 88, 124, 169, 233, 324, 445, 614, 850, 1171, 1616, 2233, 3080, 4251, 5870, 8100, 11180, 15434, 21301, 29401, 40584, 56015, 77316, 106720, 147301, 203316, 280635, 387352, 534653
Offset: 0

Views

Author

Paul Tek, Jul 27 2014

Keywords

Examples

			A 3 X 1 rectangle can be tiled in three ways:
  +-+-+-+  +-+---+     +---+-+
  | | | |, | |   | and |   | |.
  +-+-+-+  +-+---+     +---+-+
The first tiling is not acceptable, as none of the 1 X 1 tiles is next to a 2 X 1 tile.
The second and third tilings are acceptable, as every 1 X 1 tile is next to a 2 X 1 tile and vice versa.
Hence, a(3)=2.
		

Crossrefs

Cf. A230096.

Programs

  • PARI
    Vec(-(x^6+x^3+1)/((x^2+x+1)*(x^4+x-1)) + O(x^100)) \\ Colin Barker, Jul 28 2014

Formula

[0 1 0 0 1 0 0] [1]
[0 0 1 0 0 0 0] [0]
[0 0 0 1 0 0 0] [0]
a(n) = [1 0 0 0 0 0 0] * [0 0 0 0 1 0 1]^n * [1], for any n>=0.
[0 0 0 0 0 1 0] [0]
[0 0 0 0 0 0 1] [0]
[0 1 1 0 0 0 0] [1]
G.f.: (x^6+x^3+1)/(-x^6-x^5-x^4-x^3+1) = -(x^6+x^3+1)/((x^2+x+1)*(x^4+x-1)). - Colin Barker, Jul 27 2014
a(n) = a(n-3)+a(n-4)+a(n-5)+a(n-6) for n>6. - Colin Barker, Jul 28 2014

A356050 a(n) = 2*A135318(n+1) - A135318(n).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 11, 14, 21, 26, 43, 54, 85, 106, 171, 214, 341, 426, 683, 854, 1365, 1706, 2731, 3414, 5461, 6826, 10923, 13654, 21845, 27306, 43691, 54614, 87381, 109226, 174763, 218454, 349525, 436906, 699051, 873814, 1398101, 1747626, 2796203, 3495254, 5592405
Offset: 0

Views

Author

Paul Curtz, Aug 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 2}, {1, 1, 3, 4}, 50] (* Amiram Eldar, Aug 19 2022 *)

Formula

a(n) = A135318(n) + A230096(n+1).
a(n) = a(n-8) + 5*A094958(n-5).
a(2*n) = A001045(n+2).
a(2*n+1) = A084214(n+1).
From Stefano Spezia, Aug 20 2022: (Start)
O.g.f.: (1 + x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - 2*x^2)).
E.g.f.: (8*cosh(sqrt(2)*x) - 2*cos(x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 4*sin(x))/6. (End)
3*a(n) = A228826(n+1) +A094958(n+3). - R. J. Mathar, Jan 25 2023
Showing 1-2 of 2 results.