A230097 Indices of records in A159918.
0, 1, 3, 5, 11, 21, 39, 45, 75, 155, 181, 627, 923, 1241, 2505, 3915, 5221, 6475, 11309, 15595, 19637, 31595, 44491, 69451, 113447, 185269, 244661, 357081, 453677, 908091, 980853, 2960011, 2965685, 5931189, 11862197, 20437147, 22193965, 43586515, 57804981, 157355851
Offset: 1
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..80, (terms 41..64 from Donovan Johnson, 65..70 from Hugo Pfoertner, missing 68 and 72..80 from Bert Dobbelaere).
- Bernt Lindström, On the binary digits of a power, Journal of Number Theory, Volume 65, Issue 2, August 1997, Pages 321-324.
Programs
-
Haskell
a230097 n = a230097_list !! (n-1) a230097_list = 0 : f 0 0 where f i m = if v > m then i : f (i + 1) v else f (i + 1) m where v = a159918 i -- Reinhard Zumkeller, Oct 12 2013 (Python 3.10+) from itertools import count, islice def A230097_gen(): # generator of terms c = -1 for n in count(0): if (m := (n**2).bit_count())>c: yield n c = m A230097_list = list(islice(A230097_gen(),20)) # Chai Wah Wu, Oct 01 2022
Formula
Lindström shows that lim sup wt(m^2)/log_2 m = 2.
Extensions
a(19)-a(40) from Reinhard Zumkeller, Oct 12 2013
Comments